Extension Domains for A_p Weights

PETER J. HOLDEN

1. Introduction

In this paper we determine conditions on a bounded domain D in \mathbb{R}^N ($N \ge 2$) so that every A_p weight on D can be extended to an A_p weight on \mathbb{R}^N . We also give boundary conditions on a Jordan domain D in \mathbb{R}^2 so that D is an extension domain for A_p .

Let D be a connected open set in \mathbb{R}^N , $N \ge 2$. A positive, locally integrable function w on D is said to belong to the class $A_p(D)$, 1 , if

(1.1)
$$||w||_p = \sup_{Q \in \mathfrak{F}_0} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \left(\frac{1}{|Q|} \int_Q \left(\frac{1}{w} \right)^{1/(p-1)} dx \right)^{p-1} < \infty,$$

where \mathfrak{F}_0 denotes the set of all cubes contained in D. The class $A_p(D)$ has been extensively studied in the case $D = \mathbb{R}^N$; they are precisely the class of weights for which, for example, the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(t)| dt$$

satisfies

$$\int (Mf(x))^p w(x) dx \le C_p \int |f(x)|^p w(x) dx.$$

There is a close connection between $A_p(D)$ and the space of functions of bounded mean oscillation, abbreviated BMO(D). We say $f \in BMO(D)$ if

$$\sup_{Q\in\mathfrak{F}_0}\frac{1}{|Q|}\int_{Q}|f-f_Q|<\infty,$$

where $f_Q = (1/|Q|) \int_Q f dt$ denotes the average of f on Q. This connection is as follows. If $w \in A_p(D)$ then $\log w \in BMO(D)$, while if $f \in BMO(D)$ then (by the theorem of John and Nirenberg) $e^{\delta f} \in A_p(D)$ for some $\delta > 0$.

We say that the domain D is an extension domain for $A_p(D)$ if whenever $w \in A_p(D)$ there exists $W \in A_p(\mathbb{R}^N)$ such that W = w a.e. on D. Extension domains for BMO are defined analogously and have been characterized in [6], where it is shown that D is an extension domain for BMO if and only if

Received November 5, 1990. Michigan Math. J. 39 (1992).