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Introduction

In this paper we study the boundary behavior of functions of the form
(1—1z|%)"f ™ (z); here f is an analytic function defined on the open unit disk
D in the complex plane and # is a positive integer. Many well-studied classes
of analytic functions arise from requiring functions of the above form to
have a certain growth rate. For example, the Bloch space ® is defined to be
the set of analytic functions f on D such that (1—|z|?)f’(z) is bounded on
D, and the little Bloch space ®, is defined to be the set of analytic functions
fon Dsuch that (1—|z|?)f’(z) — 0as |z]| — 1 (of course, z is restricted to the
values in D).

Let dA denote the usual Lebesgue area measure on the complex plane.
For p €[1, =), the Bergman space L# is defined to be the set of analytic func-
tions f on D such that
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As is well known (e.g., see [2, Prop. 1.7]), if fe L} then

4)) f(r)y=— 1 S (lf( _))2 dA(w) for every zeD.

Equation (1) suggests that for fe L'(D, dA) (not necessarily analytic), we
define an analytic function P(f) on D by
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It is useful to know the image under P of certain natural spaces. We begin
by noting that P restricted to L*(D,dA) is the orthogonal projection of
L*(D, dA) onto L2; furthermore, if p € (1, ) then Prestricted to L?(D, dA)
is a bounded projection of L?(D,dA) onto L? (see Theorem 1.10 of [2];
throughout this paper, we choose references most suited to our approach, so
the references are not necessarily to the original source).
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