A New Proof of the Bott–Samelson Theorem

JYH-YANG WU

1

Let (M, g) be a compact connected Riemannian manifold with dim $M = n \ge 2$. Let i_M and d_M denote the injectivity radius and the diameter of M. Given any point p in M, let i_p and C(p) denote the injectivity radius at p and the cut locus of p. We shall call M an S_l -manifold if, for some point $p \in M$, C(p) is an l-dimensional submanifold of M. If, for every point $p \in M$, C(p) is an l-dimensional submanifold, then we shall call M an ES_l -manifold. For example, according to the Allamigeon-Warner theorem [B], all Blaschke manifolds are ES_l -manifolds. In particular, all compact symmetric spaces of rank one (CROSSes) are ES_l -manifolds for some l. The Bott-Samelson theorem [B] can be stated in the following way.

THEOREM. The integral cohomology ring of a Blaschke manifold is the same as that of a CROSS.

The purpose of this note is to give a new proof of this theorem by using the Thom isomorphism theorem. More precisely, we shall prove the following two theorems.

THEOREM A. If M is an ES_l -manifold with l = 0, then M is isometric to the standard unit sphere S^n up to a constant factor.

THEOREM B. The integral cohomology ring of an S_l -manifold M is the same as that of a CROSS. More precisely, $\pi_1(M) = 0$ or \mathbb{Z}_2 .

- (1) $\pi_1(M) = \mathbb{Z}_2$ if and only if l = n-1. In this case, M has the homotopy type of $\mathbb{R}P^n$.
- (2) If $\pi_1(M)$ is trivial, one has only the following possibilities:
 - (a) l = 0, and M is homeomorphic to S^n ;
 - (b) n=2m, l=n-2, and M has the homotopy type of $\mathbb{C}P^m$;
 - (c) n = 4m, l = n 4, and M has the integral cohomology ring of $\mathbf{H}P^m$;
 - (d) n = 16, l = 8, and M has the integral cohomology ring of $\mathbb{C}aP^2$.

Received December 13, 1989.