Farrell and Mergelyan Sets for H^p Spaces (0

FERNANDO PÉREZ GONZÁLEZ & ARNE STRAY

Dedicated to professor Ernst Selmer on the occasion of his 70th birthday

1. Introduction

Let F be a relatively closed subset of the open unit disc \mathbf{D} of the complex plane \mathbf{C} , and let A be a space of analytic functions on \mathbf{D} endowed with a topology τ such that the polynomials are τ -dense in A. The set F is said to be a Farrell set for (A, τ) if for each function $f \in A$ whose restriction $f|_F$ is bounded there exists a sequence $(p_{\nu})_{\nu=1}^{\infty}$ of polynomials satisfying:

- (1) $p_{\nu} \to f$ in the τ -topology, as $\nu \to \infty$,
- (2) $p_{\nu} \rightarrow f$ pointwise on F, as $\nu \rightarrow \infty$, and
- (3) $||p_{\nu}||_F \to ||f||_F$, as $\nu \to \infty$.

As usual, $||g||_B$ denotes $\sup\{|g(z)|: z \in B\}$. Similarly, F is said to be a *Mergelyan set for* (A, τ) if, for each function $f \in A$ whose restriction to F is uniformly continuous, there exists a sequence $(p_{\nu})_{\nu=1}^{\infty}$ of polynomials such that

- (α) $p_{\nu} \rightarrow f$ in the τ -topology, as $\nu \rightarrow \infty$, and
- (β) $p_{\nu} \rightarrow f$ uniformly on F, as $\nu \rightarrow \infty$.

Farrell and Mergelyan sets have been described for several cases: (a) A is the space $H^{\infty}(\mathbf{D})$ of all bounded analytic functions and τ the topology of pointwise convergence on \mathbf{D} [9]; (b) A is the Hardy space H^p ($1 \le p < \infty$) and τ is the weak topology [8] or the norm topology [7]; (c) A is the space $H(\mathbf{D})$ of all analytic functions on \mathbf{D} with the topology of uniform convergence on compact subsets of \mathbf{D} .

A holomorphic function in \mathbf{D} is said to belong to the Nevanlinna class N if its characteristic function

$$T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log(1 + |f(re^{i\theta})|) d\theta$$

is bounded for $0 \le r < 1$. In this case $N(f) = \sup_{0 \le r < 1} T(r, f)$. A function $f \in N$ is said to belong to the Smirnov class N^+ if there hold

$$\lim_{r \to 1} \int_0^{2\pi} \log(1 + |f(re^{i\theta})|) d\theta = \int_0^{2\pi} \log(1 + |f(e^{i\theta})|) d\theta.$$

Received January 11, 1988. Revision received January 6, 1989.

The first author was partially supported by Consejería de Educación, Gobierno Autónomo de Canarias, proyecto núm. 8/30.04.86.

Michigan Math. J. 36 (1989).