The Structure of the Space of Co-Adjoint Orbits of a Completely Solvable Lie Group

BRADLEY N. CURREY & RICHARD C. PENNEY

0. Introduction

Let G be a connected, simply connected, completely solvable Lie group with Lie algebra g. For G nilpotent, Pukanszky in [6] shows that there is an $Ad^*(G)$ -invariant Zariski open subset Ω of g^* in which all $Ad^*(G)$ -orbits have the same dimension and in which there is an algebraic subset Σ which is a cross-section for the orbits. Moreover, there is a subspace V of g^* and a computable, rational, nonsingular map $\Theta: \Sigma \times V \to \Omega$ such that, for each $l \in \Sigma$, $\Theta(l, \cdot)$ is a polynomial map whose graph is the orbit of l. In fact, Pukanszky's technique yields a layering of g* by a collection of algebraic subsets $\{\Omega_i\}$ having a natural total ordering such that the maximal subset is Ω and such that in each Ω_i one can construct objects Σ_i , V_i , and Θ_i as described above. In this way a semi-algebraic cross-section for all the $Ad^*(G)$ orbits is obtained. It should be emphasized that these constructions are quite explicit and depend only on the choice of a Jordan-Holder basis for g. The ordering of the layers and the computability of the cross-section in each layer makes this result particularly useful (see, e.g., [1]). For solvable groups, the layering $\{\Omega_i\}$ of g^* has itself been useful, but the space of co-adjoint orbits in each layer is more complex. For a given layer Ω , one cannot expect to obtain objects analogous to Σ , V, and Θ above. In this paper we show that, for G completely solvable, there is a refinement of the layering $\{\Omega_i\}$ such that in each of the refined layers one can obtain computable objects analogous to Σ , V, and Θ above. This refined layering also has a nice ordering, and the layers are algebraic sets. More specifically, we prove the following.

THEOREM. Let G be a connected, simply connected, completely solvable Lie group with Lie algebra g, and let $g = g_n \supset g_{n-1} \supset \cdots \supset g_0 = (0)$ be a Jordan–Holder sequence of ideals in g. Choose a basis X_1, X_2, \ldots, X_n for g such that X_1, X_2, \ldots, X_j span g_j , and let e_1, e_2, \ldots, e_n be the dual basis in g^* . Then there is a finite computable layering (i.e., partition) g of g^* with the following properties:

Received November 15, 1988.

The second author was partially supported by National Science Foundation grant #85-05771. Michigan Math. J. 36 (1989).