AN EXTENSION OF WIDDER’S THEOREM

Krzysztof Samotij

1. Introduction. In this paper we consider a problem concerning the bound-
ary behavior of solutions of the one-dimensional heat equation on the strip (or
the half-plane) ®.= R X (0, ¢), where 0 < ¢ < +c0. By a solution of the heat equa-
tion on an open set D < R? we understand here a twice continuously differenti-
able real function u(x, ¢), (x, ¢) € D, such that u,, =u, in D.

It is well known that many properties of such functions are similar to those of
harmonic functions (see e.g. [8], [6], [3], [4], and [2]). One of these similarities
is that nonnegative harmonic function on »., and nonnegative solutions of the
heat equation on . both have Poisson-type integral representations. In the “har-
monic” case this fact is attributed to F. Riesz and Herglotz, and in the case of so-
lutions of the heat equation it is a theorem due to Widder [8]. In [5] Hayman and
Korenblum obtained “an extension of the Riesz-Herlotz formula” by showing
that for a continuous positive nonincreasing function k(¢), # > 0, the condition

g; JEOE dt <+

is equivalent to the property that each harmonic function 4 defined on D, with
h(x,t)=<k(), t >0, can be represented in the form

1 g+ 4 . ¥
h(x,t)= p S__oo )t d(Tl_l’I;I)l+ So h(z, 1) dz>+Ct.
The outer integral in the above formula was originally defined by the integration-
by-parts formula, but, as shown later in [7], it can be understood as a Riemann-
Stieltjes integral (with respect to a function which may not necessarily be of
bounded variation). The aim of this paper is to show an analogue of that result
for solutions of the heat equation on D,.
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2. Main results. Let K(x, ¢) be the Gauss kernel, that is,

1 2
K(x,t)= Wi exp(——%), XeR, t>0.

In the sequel & will always denote a positive nonincreasing unbounded continu-
ous function on (0, +0).
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