SOME KREIN SPACES OF ANALYTIC FUNCTIONS AND AN INVERSE SCATTERING PROBLEM

Daniel Alpay

- 1. Introduction. The present paper deals with certain reproducing kernel Krein spaces (RKKS) of analytic functions, and we first recall the definition of a reproducing kernel Hilbert space (RKHS). A Hilbert space 3 \mathcal{C} of \mathbf{C}_n -valued functions defined on some set S has reproducing kernel $K_{\omega}(\lambda)$, where $K_{\omega}(\lambda)$ is a $\mathbf{C}_{n \times n}$ -valued function defined for λ and ω in S if
 - (1) for any ω in S and c in \mathbb{C}_n , the function $K_{\omega}c: \lambda \mapsto K_{\omega}(\lambda)c$ belongs to \mathfrak{K} ;
 - (2) for any f in \mathcal{K} , ω in S, and c in \mathbb{C}_n ,

$$\langle f, K_{\omega} c \rangle = c^* f(\omega),$$

where \langle , \rangle denotes the inner product in \mathfrak{F} .

The function $K_{\omega}(\lambda)$ is easily seen to be unique and symmetric:

$$(1.2) K_{\omega}(\lambda) = K_{\lambda}^{*}(\omega).$$

It is moreover positive: for any r, any choice of r points in S, $\omega_1, ..., \omega_r$, and any $c_1, ..., c_r$ in \mathbb{C}_n , the $r \times r$ matrix with ij entry

$$(1.3) c_j^* K_{\omega_i}(\omega_j) c_i$$

is positive.

Conversely, by the matrix version of a result of Moore [5], to any $\mathbb{C}_{n\times n}$ -valued function $K_{\omega}(\lambda)$ defined on some set S and positive in the sense just explained one can associate a unique reproducing kernel Hilbert space of \mathbb{C}_n -valued functions defined on S with reproducing kernel $K_{\omega}(\lambda)$.

In [19], Sorjonen relaxed the positivity condition and supposed that the function $K_{\omega}(\lambda)$ has v negative squares. Under this weaker hypothesis, the result of Moore may be extended. There exists a unique reproducing kernel Pontryagin space of \mathbb{C}_n -valued functions defined on S with reproducing kernel $K_{\omega}(\lambda)$.

The problem of associating to a given $C_{n\times n}$ -valued function $K_{\omega}(\lambda)$ subject to (1.2) a reproducing kernel Krein space with reproducing kernel $K_{\omega}(\lambda)$ sæms open, and the aim of the present paper is twofold: first, in Section 2, we construct a reproducing kernel Krein space when $K_{\omega}(\lambda)$ is of the form

(1.4)
$$\frac{X(\lambda)JX^*(\omega)}{\rho_{\omega}(\lambda)},$$

where X is a $\mathbb{C}_{n \times m}$ -valued function of bounded type in Δ_+ (Δ_+ designates either the open unit disk \mathbf{D} or the open upper half plane \mathbb{C}_+), where J is a signature matrix, that is, a matrix subject to

Received August 14, 1986. Revision received May 27, 1987. Michigan Math. J. 34 (1987).