SEMILINEAR BOUNDARY VALUE PROBLEMS FOR UNBOUNDED DOMAINS

Martin Schechter

1. Introduction. Let A be a non-negative self adjoint elliptic partial differential operator of order m on a (bounded or unbounded) domain $\Omega \subset \mathbb{R}^n$. We consider the Dirichlet problem for equations of the form

$$(1.1) Au = f(x, u),$$

where f(x, u) is a function defined on $\Omega \times \mathbf{R}$. Examples of the functions we consider include

(1.2)
$$f(x, u) = V(x)e^{u}(W(x)\cos e^{u} - 1),$$

where $V(x) \ge 0$, $V \in L^1$, $W \in L^{\infty}$. We show that for this choice of f(x, u) the Dirichlet problem for (1.1) always has a solution (no matter what A, m, Ω are). The same is true for

(1.3)
$$f(x, u) = W(x) - V(x)ue^{u^2},$$

where $W \in L^t$ for some t satisfying $1/2 \le 1/t \le 1/2 + m/2$ and V satisfies the assumptions above. Another example is

(1.4)
$$f(x, u) = V(x)[W(x)u^k \sin u^{k+1} - \sinh u + 1],$$

with V, W satisfying the same hypotheses as for (1.2) and $V \in L'$ with t as above. We can also consider expressions such as

(1.5)
$$f(x, u) = W(x) - V(x)u^{2k-1},$$

where V, W satisfy the same assumption as for (1.3).

In some instances we find a constant $\lambda_0 > 0$ such that

$$(1.6) Au = \lambda f(x, u)$$

has a solution for each λ such that $0 < \lambda < \lambda_0$. This is done for the case

(1.7)
$$f(x, u) = V(x) |u|^q u + W(x),$$

where $q \ge -1$, $V \in L^{\infty}$, and $W \in L^{t}$ with $1/(q+2) + m/2 = 1/2 \le 1/t \le 1/2 + m/n$. Another example is

(1.8)
$$f(x,u) = V_1(x)|u|^{q_1}u + V_2(x)|u|^{q_2}u,$$

with $-2 < q_1 < 0 < q_2$. In this case we give sufficient conditions for (1.6) to have a non-trivial solution.

We present two methods of attack. The first is to find a stationary point of a functional corresponding to (1.1). One of the major stumbling blocks in this

Received November 15, 1985.

Michigan Math. J. 34 (1987).