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1. Introductory remarks. Let u € D’(C) be a distribution in C = R2 If his an
arbitrary Cy -function in C (i.e., a C“-function with a compact support), then it
is well known that the Leibniz differentiation rule still holds for the product uh

(see, e.g., [12, Ch. VI]).
In particular,
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and the equality is understood in the sense of distributions.
Let p be a finite Borel measure in C. The Cauchy potential (transform) j of p
is defined by

where, as usual,

d
ﬂ(z)=SC —i‘—uz'

It is well known (see [8, Ch. II]) that fi(z) is defined almost everywhere with re-
spect to the area and that i(z) € Li,c(dxdy); that is, for any compact set K C C,
SK || dxdy < +oo.

So e D’(C) and, as is known,

op
oz H
(see [7, Ch. 1I]; [8, Ch. II]). Thus, for all 7€ Cy°, we have
d oh
1 —(ih) = — i—.
1 9z (ih) Tph+f oz

In other words,
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ph=p-h——p—dxdy.
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