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0. Introduction. Suppose f is a bounded pluriharmonic function in the unit
ball of C”. 1t is a corollary to Theorem 3 of [5] that f has a radial limit at a given
boundary point if and only if the (a.e.) boundary values of f have a certain “de-
rivative” at that point. The main result of the present paper is an analogous result
for pluriharmonic functions satisfying a Bloch condition: see Theorem 1 below.
Note that since Bloch functions need not have radial limits a.e., the statement of
Theorem 1 involves instead certain linear functionals on the Bloch space which
reduce to the average of the boundary values over certain sets, if these boundary
values exist. Thus if f is Bloch and equals the Poisson-Szeg0 integral of a mea-
sure, the existence of a radial limit is equivalent to the existence of a “derivative”
of the boundary measure (Corollary 1). In particular, in case f is both plurihar-
monic and the Poisson-Szegd integral of a BMO function, we obtain Corollary
2. (The present Corollary 2 was the main result in the original version of this
paper. Peter Jones, in collaboration with Carl Sundberg, suggested that exactly
the same proof would yield Corollary 1, a stronger result.)

Theorem 1 will follow from Theorem 2, concerning Bloch functions in the unit
disc. The averages in Theorem 2 are taken over open subsets of the disc, so that
the non-existence of boundary values is no longer a problem. This reduction from
a subset of the boundary of the unit ball in C” to an open subset of C is available
only if n = 2; this is the reason for the hypothesis “n# =2 in Theorem 1. (The state-
ment of Theorem 1 is still true for » =1, but the proof is very much different and
will appear elsewhere. Note that the case » =1 of Corollary 2 is contained in [6].)

Theorem 2, in turn, will follow from Theorem 3, which may be regarded as
a quantitative version of results implicit in [5]; Theorem 3 is possibly of some
interest in itself.

This paper had its origin in conversations and joint work with Wade Ramey;
I wish to thank him.

1. Statement of results. Let n=2. Let B denote the unit ball of C", S=0B;
let o denote the rotation-invariant probability measure on S. Let 8@ = ®B(B) be
the Bloch space, the space of all pluriharmonic functions f: B — C such that the
quantity
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is bounded in B. (This is simply the square of the norm on covectors dual to the
Bergman metric, applied to the gradient of f. Various other characterizations of
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