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0. Introduction and preliminaries. The study of infinite-dimensional manifolds
modeled on Q=[—1,1]7 and s =(—1, 1)® reached a climax when H. Torunczyk
gave a topological characterization theorem for these spaces: A locally compact
ANR is a Q-manifold if and only if any map f: C —» X of a compact (metric)
space can be approximated by a closed embedding. Similarly, a complete ANR
X is an s-manifold if and only if any map f: C — X of a complete (metric) space
can be approximated by a closed embedding.

The second author has characterized manifolds modeled on o ={(fy, f2,...) €
[—1,1]%°: ¢; =0 for all but finitely many i} and X = {(#, #,...) € Q% : ¢; =0 for all
but finitely many i} in the same spirit [20]: An ANR X is a o-manifold if and
only if X can be represented as a countable union of finite-dimensional com-
pacta, each of which is a strong Z-set in X, and any map f: C —» X of a finite-
dimensional compactum C, that is a Z-embedding when restricted to a closed
subset D = C, can be approximated by a Z-embedding g: C — X so that g |D =
S| D. (The characterization theorem for X-manifolds is obtained by deleting the
words “finite-dimensional.”) Although the resemblance with the characterization
theorems for O-manifolds and s-manifolds is obvious, one cannot avoid observ-
ing the much cleaner structure of Torunczyk’s theorems. However, the mention
of strong Z-sets is necessary, since examples of fake s-manifolds constructed in
[4] lead to a straightforward construction of an AR X that can be represented as
o U{point}, such that X s ¢, but X satisfies the hypotheses of the characterization
theorem for o, after deleting the word “strong.” Similarly, if we replace the rela-
tive approximation condition by an absolute one (i.e., requiring D = J), then a
counterexample is constructed by J. P. Henderson and J. J. Walsh [18].

In this paper we introduce a notion of strong C-universality for a class C of
(separable, metric) spaces. In the case that C = {(finite-dimensional) compacta}
this is precisely the property stated in the characterization theorem for X (respec-
tively o).

The key idea that allows one to prove the characterization theorem for ¥ and
o is the notion of an (f.d.) cap set (finite-dimensional compact absorption set),
due to R. D. Anderson [2]. Loosely speaking, ¥ = Q—s C Q is a cap set, since it
is strongly C-universal (€ = {compacta}) and there are small maps Q - X C Q.
This notion has been subsequently generalized by different authors (cf. [5], [24],
[27], [14]). In §3 we introduce the definition of a C-absorbing set, which represents
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