ON A HARDY AND LITTLEWOOD IMBEDDING THEOREM

Björn Jawerth and Alberto Torchinsky

Introduction. For f in the class $H^p(\text{disc})$, 0 , Hardy and Littlewood [8, Theorem 31] showed that

$$\left\{ \int_0^1 \left[(1-\rho)^{1/p-1/r} \left(\int_0^{2\pi} |f(\rho e^{i\theta})|^r d\theta \right)^{1/r} \right]^q (1-\rho)^{-1} d\rho \right\}^{1/q} \leq c \|f\|_{H^p},$$

where $0 , <math>p \le q \le \infty$. They used this inequality in their discussion of fractional integrals and convolutions of power series. The case $0 has also been used by Duren, Romberg and Shields [2] to identify the bounded linear functionals on <math>H^p(\text{disc})$. Recently Flett [5] observed that the inequality gives easy proofs of a number of interesting results, and simplified its proof.

The purpose of this note is to present a simple proof of a general version of this inequality and to discuss some of its applications in various settings. We begin by introducing a maximal function. Let (X, μ) and (T, ν) be measure spaces with positive measures $d\mu$ and $d\nu$ respectively. Assume that to each $(x,t) \in X \times T$ we associate a μ -measurable set $B(x,t) \subseteq X$ so that the family $\mathfrak{B} = \{B(x,t)\}$ verifies three conditions, namely

- (i) $x \in B(x, t)$ for each $t \in T$;
- (ii) if $y \in B(x, t)$, then $x \in B(y, t)$; and
- (iii) $0 \leq \mu(B(x,t)) \leq \infty$.

For functions f defined on $X \times T$ and $x \in X$ we set

$$M_{\mathfrak{B}} f(x) = \sup_{t \in T} \sup_{y \in B(x,t)} |f(y,t)|.$$

We begin by observing the following:

PROPOSITION. Suppose $M_{\mathfrak{G}} f \in L^p(X)$, 0 . Then

$$|f(x,t)| \leq \min\left(M_{\mathfrak{B}}f(x), \left(\frac{1}{\mu(B(x,t))}\int_{B(x,t)}M_{\mathfrak{B}}f(y)^{p}d\mu\right)^{1/p}\right).$$

Proof. It is immediate. From (i) it follows that $|f(x,t)| \le M_{\mathfrak{B}} f(x)$, and from (ii) that $|f(x,t)| \le \inf_{y \in B(x,t)} M_{\mathfrak{B}} f(y)$, which in view of (iii) gives the desired conclusion at once.

We can now prove our first imbedding result.

THEOREM 1. Suppose that $M_{\mathfrak{B}} f \in L^p(X)$, 0 , and that <math>q and α verify $p \leq q < \infty$ and $-1 + q/p \leq \alpha < q/p$. Furthermore, assume that the non-negative function k(x,t) verifies

Received April 22, 1983. Revision received October 31, 1983.

Research supported in part by grants from the NFR and NSF.

Michigan Math. J. 31 (1984).