TOPOLOGICAL RESULTS IN COMBINATORICS

James R. Munkres

Let Δ be a finite simplicial complex with vertex set $V = \{x_0, \ldots, x_n\}$. Let $X = |\Delta|$ denote its underlying topological space. Let K be a field. Associated with Δ and K is a certain ring $K[\Delta]$, described as follows: Let $S = K[x_0, \ldots, x_n]$ be the polynomial ring over K with indeterminates x_0, \ldots, x_n . Let I_{Δ} be the ideal of S generated by all monomials $x_{i_0} \cdots x_{i_r}$ such that $i_0 < \cdots < i_r$ and the vertices x_{i_0}, \ldots, x_{i_r} do *not* span a simplex of Δ . Define $K[\Delta] = S/I_{\Delta}$.

Now when $K[\Delta]$ is considered as a module over the polynomial ring S, it has a finite free resolution

$$0 \longrightarrow M_i \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow K[\Delta] \longrightarrow 0;$$

this is an exact sequence of S-modules, where each M_i is free. Furthermore, there is a unique such graded resolution which minimizes the rank of each M_i ; such a resolution is called *minimal*. Let $b_i = b_i(K[\Delta])$ be the rank of the module M_i in this minimal free resolution. The largest integer i for which $b_i \neq 0$ is called the homological dimension (or the depth) of $K[\Delta]$, and denoted $h(\Delta)$.

It is known that $n - \dim \Delta \leq h(\Delta) \leq n+1$, where we recall that n+1 is the number of vertices of Δ . If $h(\Delta) = n - \dim \Delta$, then the ring $K[\Delta]$, and by extension the complex Δ , is said to be *Cohen-Macaulay*. If this condition is satisfied and if in addition $b_{h(\Delta)} = 1$, then the ring and the complex are said to be *Gorenstein*. These conditions have been extensively studied by M. Hochster [1] and R. Stanley [4].

Hochster conjectured that the Cohen-Macaulay condition is independent of the simplicial structure of Δ , depending only on the underlying topological space. This conjecture has turned out to be correct, and in fact was almost proved by a student of Hochster's, G. Reisner. In his thesis [3], Reisner derived a condition involving the links of simplices in Δ , which he proved equivalent to the condition that Δ be Cohen-Macaulay. It requires only a short additional argument to show his condition equivalent to one which is topologically invariant. See Corollary 3.4 following.

A more general conjecture was suggested to the author by Stanley. The Cohen-Macaulay condition is just the condition that the number $n-h(\Delta)-\dim \Delta$ should vanish. Stanley conjectured that *this number itself* is a topological invariant of $|\Delta|$. Our purpose in this paper is to prove this conjecture. It suffices to prove $n-h(\Delta)$ a topological invariant, since it is well-known that dim Δ is.

The proof relies on a theorem of Hochster's, stated in §1, which expresses the numbers b_i in terms of the cohomology (with coefficients in K) of Δ and its subcomplexes. In §2 we use Hochster's theorem to give a proof of our conjecture for complexes whose underlying spaces are the sphere S^N and the ball B^N . This case

Received September 18, 1983.

Michigan Math. J. 31 (1984).