ON CURVATURE AND SIMILARITY

Douglas N. Clark and Gadadhar Misra

1. Introduction. The purpose of this note is to shed some light on the relationship between the Cowen-Douglas curvatures \mathcal{K}_T and \mathcal{K}_S , for two similar operators T, S of class $B_1(\Omega)$, by making use of recent results on the similarity of Toeplitz operators [1].

To be specific, let Ω be a planar region. We say a bounded operator T on a Hilbert space H belongs to $B_1(\Omega)$ if $T-\lambda I$ is onto and has 1-dimensional kernel for $\lambda \in \Omega$, and if

$$\bigvee_{\lambda \in \Omega} \ker(T - \lambda I)$$

is dense in H. For $T \in B_1(\Omega)$, the curvature \mathcal{K}_T is defined, for $\lambda \in \Omega$, by

$$\mathcal{K}_T(\lambda) = -\frac{\partial^2}{\partial \bar{\lambda} \partial \lambda} \log ||k_{\lambda}||^2,$$

where $\{k_{\lambda}\}$ is an analytic determination of the set of null vectors of $T-\lambda I$, $\lambda \in \Omega$. In [4], Cowen and Douglas introduce B_1 and \mathcal{K}_T and prove, among other things, that \mathcal{K}_T is a complete unitary invariant for $T \in B_1(\Omega)$. But for similar $S, T \in B_1(\Omega)$, the situation is not made so clear. In fact, the best analogue of the result for unitary equivalent S and T is left as a conjecture for the case of similarity. Let $S, T \in B_1(\mathbf{D})$, \mathbf{D} the unit disk, and suppose the closure $\bar{\mathbf{D}}$ of \mathbf{D} is a k-spectral set for S and T, for some k. The Cowen-Douglas conjecture ([4], p. 252) states that if S and T are similar, then

$$\lim_{\lambda \to \lambda_0 \in T} \mathcal{K}_T(\lambda) / \mathcal{K}_S(\lambda) = 1,$$

where T is the unit circle. (Actually, Cowen and Douglas also conjecture the converse statement; we shall have no further comment concerning the converse, however.)

In Section 2, using a "piece" of Toeplitz operator from [1], we show that the Cowen-Douglas conjecture is false. In Section 3, we investigate our example further, showing how the failure of the conjecture can be used to obtain a spectral set estimate. In Section 4, we describe a class of Toeplitz operators for which the Cowen-Douglas conjecture holds.

2. The example. Let T_F denote the Toeplitz operator with symbol

$$F(z) = z^2/(z-\beta)$$
 $\frac{1}{2} < \beta < 1$,

so that, for $x \in H^2$,

Received April 18, 1983. Revision received July 13, 1983.

The first author was partially supported by an N.S.F. grant.

Michigan Math. J. 30 (1983).