ON CURVATURE AND SIMILARITY ## Douglas N. Clark and Gadadhar Misra 1. Introduction. The purpose of this note is to shed some light on the relationship between the Cowen-Douglas curvatures \mathcal{K}_T and \mathcal{K}_S , for two similar operators T, S of class $B_1(\Omega)$, by making use of recent results on the similarity of Toeplitz operators [1]. To be specific, let Ω be a planar region. We say a bounded operator T on a Hilbert space H belongs to $B_1(\Omega)$ if $T-\lambda I$ is onto and has 1-dimensional kernel for $\lambda \in \Omega$, and if $$\bigvee_{\lambda \in \Omega} \ker(T - \lambda I)$$ is dense in H. For $T \in B_1(\Omega)$, the curvature \mathcal{K}_T is defined, for $\lambda \in \Omega$, by $$\mathcal{K}_T(\lambda) = -\frac{\partial^2}{\partial \bar{\lambda} \partial \lambda} \log ||k_{\lambda}||^2,$$ where $\{k_{\lambda}\}$ is an analytic determination of the set of null vectors of $T-\lambda I$, $\lambda \in \Omega$. In [4], Cowen and Douglas introduce B_1 and \mathcal{K}_T and prove, among other things, that \mathcal{K}_T is a complete unitary invariant for $T \in B_1(\Omega)$. But for similar $S, T \in B_1(\Omega)$, the situation is not made so clear. In fact, the best analogue of the result for unitary equivalent S and T is left as a conjecture for the case of similarity. Let $S, T \in B_1(\mathbf{D})$, \mathbf{D} the unit disk, and suppose the closure $\bar{\mathbf{D}}$ of \mathbf{D} is a k-spectral set for S and T, for some k. The Cowen-Douglas conjecture ([4], p. 252) states that if S and T are similar, then $$\lim_{\lambda \to \lambda_0 \in T} \mathcal{K}_T(\lambda) / \mathcal{K}_S(\lambda) = 1,$$ where T is the unit circle. (Actually, Cowen and Douglas also conjecture the converse statement; we shall have no further comment concerning the converse, however.) In Section 2, using a "piece" of Toeplitz operator from [1], we show that the Cowen-Douglas conjecture is false. In Section 3, we investigate our example further, showing how the failure of the conjecture can be used to obtain a spectral set estimate. In Section 4, we describe a class of Toeplitz operators for which the Cowen-Douglas conjecture holds. 2. The example. Let T_F denote the Toeplitz operator with symbol $$F(z) = z^2/(z-\beta)$$ $\frac{1}{2} < \beta < 1$, so that, for $x \in H^2$, Received April 18, 1983. Revision received July 13, 1983. The first author was partially supported by an N.S.F. grant. Michigan Math. J. 30 (1983).