THE CAUCHY PROBLEM FOR CONVOLUTION OPERATORS.
UNIQUENESS
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SECTION 1

In this paper we shall discuss the uniqueness of the Cauchy problem for
convolution equations in R"*'. The variables in R™*' will be denoted by
(x,t) = (x,, ..., x,,t). The dual variables in C*** will be denoted by

2= (M) = (&, .bum).

Im ¢ stands for (Im &,,...,Im¢,,), and similar expressions for Imz, Re&, etc. The
bracket (z,w) denotes the usual bilinear product in C” or C"*?, according to the
context, e.g., (§,x) =&,x, + ... + £,x,. The closed half-space {(x,£) € R"**:¢t= 0}
will be denoted by R%**.

All the functions or distributions considered will always depend on n + 1
variables, unless it is explicitly stated otherwise, e.g., if we write a function ®
as @ (x) it means that it depends only on the first n variables.

Let us recall that a convolution operator in the space &’ of distributions is
alinear continuous operator that commutes with the derivations. Using the standard
notations of the theory of distributions ([13], [24]), every convolution operator
in 2’ is defined by an element p. € &’. A particular case of convolution operators
are, of course, the partial differential operators with constant coefficients P (D),
where P is a complex polynomial in n + 1 variables, and D stands for the

d d

differentiation vector D = (D,,D,)={ —i—, ..., —i——, —i— ].
dx, ox, at
For differential operators, the Cauchy problem can be stated in the following

form [12]; [13, Chapter V]:

Givenf € 2 ' (R"*") with supp f C R®™,
(1.1) findg € 2 '(R**") with supp g C R>*",

such that P(D)g = fin R**™.
Hence, the uniqueness problem reduces to study the existence of nontrivial solutions

g of the homogeneous equation P(D)g = 0, with supp g C R"™*.

A classical theorem of Holmgren states that the necessary and sufficient condition
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