OMITTED VALUES OF SINGULAR INNER FUNCTIONS

Kenneth Stephenson

In this paper we investigate certain properties of measures on the unit circle T associated with singular inner functions which omit values in the unit disc U. Our results are used to resolve some open questions concerning inner functions; in particular, we disprove a conjecture of Herrero concerning the structure of the inner functions under the uniform topology of H^{∞} , the space of bounded analytic functions on U. We assume that the reader is familiar with the basic theory of H^{∞} , the notion of logarithmic capacity for plane sets, and the elementary properties of universal covering surfaces for plane regions. Appropriate references would be Duren [5], Tsuji [10], and Ahlfors [1], respectively.

We briefly describe our main results below. The preliminary material is discussed in more detail and notations are established in Section 2.

1. MAIN RESULTS

If A is a (relatively) closed subset of U with (logarithmic) capacity zero, then the universal covering surface of U\A is conformally equivalent to U. If ϕ_A is an uniformizer of U\A (see 2.3), then ϕ_A is an inner function whose range is precisely U\A. For our main result we assume $0 \in A$, so that ϕ_A is a singular inner function.

THEOREM I. Let A be a closed subset of U of (logarithmic) capacity zero, $0 \in A$, and let μ be the singular measure on T associated with the conformal mapping φ_A of U onto U\A.

- (a) If 0 is an isolated point of A, then μ is discrete; i.e., it consists entirely of point masses.
- (b) If 0 is a limit point of A, then μ is continuous; i.e., it has no point masses.

The proofs of parts (a) and (b) require entirely different techniques and are given in Sections 3 and 4, respectively. Part (b) is actually a corollary to a stronger result, Theorem 4.2. The main ingredient is a mapping theorem which may be of some independent interest:

THEOREM II. Let F be an analytic function from U into the left half-plane with the property that $\liminf_{r\to 1} (1-r)|F(r)| > 0$. Then, for each M>0, the disc $\{w\in\mathbb{C}\colon |w-F(r)|< M\}$ lies in the range of F for all r sufficiently close to 1, 0< r<1.

This study was originally motivated by certain conjectures of Herrero [8] concerning inner functions under the uniform norm of H^{∞} . In Section 5 we use

Received April 19, 1977.

Michigan Math. J. 25 (1978).