LUMER'S HARDY SPACES

Walter Rudin

In the present paper, the term *pluriharmonic* will always refer to real-valued functions. A pluriharmonic function is thus one whose domain is an open subset Ω of \mathbb{C}^n and which is locally the real part of a holomorphic function.

We define $(LH)^p(\Omega)$ to be the class of all holomorphic functions $f: \Omega \to \mathbb{C}$ such that $|f|^p \le u$ for some pluriharmonic u. (Here $0 .) This is Lumer's definition of <math>H^p$ -spaces [1]. When n = 1, pluriharmonic is the same as harmonic, so that this definition coincides with the old one ([2], [3]) which involves harmonic majorants of $|f|^p$. But when n > 1, then $(LH)^p(\Omega)$ is a proper subclass of what is usually called $H^p(\Omega)$. (See, for example, [6].)

The use of pluriharmonic majorants leads to some appealing properties of (LH) $^p(\Omega)$. For example, holomorphic invariance is a triviality: if Φ is a holomorphic map of Ω_1 into Ω_2 and if $f \in (LH)^p(\Omega_2)$, then obviously $f \circ \Phi \in (LH)^p(\Omega_1)$.

To see another example, let Ω be simply connected. If $f \in (LH)^p(\Omega)$ for some $p \in (0, \infty)$, then $\log |f| \leq \Re g$ for some holomorphic g in Ω . Setting $h = f \cdot \exp(-g)$, it follows that $|h| \leq 1$. Thus every $f \in (LH)^p(\Omega)$ has the same zeros as some $h \in H^\infty(\Omega)$. This is in strong contrast to what is known [4] about zero sets of the usual H^p -functions in the unit ball or the unit polydisc of \mathbb{C}^n .

However, from the standpoint of functional analysis, the $(LH)^p$ -spaces have unexpectedly pathological properties. The purpose of the present paper is to describe some of these for the case $\Omega = B$, the open unit ball of \mathbb{C}^n ; from now on, n > 1.

When $1 \le p < \infty$, (LH)^p(B) can be normed by defining

(1)
$$\|f\|_{p} = \inf u(0)^{1/p},$$

the infimum being taken over all pluriharmonic majorants u of $|f|^p$ in B. As pointed out in [1], this norm turns (LH) p (B) into a Banach space.

For $0 \le r < 1$, we use the notation f_r to denote the function defined for $z \in B$ by $f_r(z) = f(rz)$.

We let $\mathscr U$ denote the (compact topological) group of all unitary transformations of $\mathbb C^n$. Clearly, every U $\in \mathscr U$ maps B onto B.

As usual ℓ^{∞} is the Banach space of all bounded complex sequences, and c_0 is the subspace of ℓ^{∞} consisting of those sequences that converge to 0.

Here is our main result:

THEOREM. Fix p, $1 \le p < \infty$, and fix $\epsilon > 0$.

(i) There exists a linear map of ℓ^{∞} into (LH)^p(B) which assigns to each $\gamma \in \ell^{\infty}$ a function f_{γ} that satisfies $\|\gamma\|_{\infty} \leq \|f_{\gamma}\|_{p} \leq \|f_{\gamma}\|_{\infty} \leq (1+\epsilon)\|\gamma\|_{\infty}$.

Received February 2, 1977.

Partially supported by NSF Grant MPS 75-06687.

Michigan Math. J. 24 (1977).