HP-DERIVATIVES OF BLASCHKE PRODUCTS

C. N. Linden

1. INTRODUCTION

A Blaschke product B is a function defined by a formula

(1.1)
$$B(z, \{a_n\}) = z^m \prod_{a_n \neq 0} \frac{\overline{a_n}}{|a_n|} \left(\frac{a_n - z}{1 - z\overline{a}_n}\right),$$

where $\sum_n (1 - |a_n|) < \infty$, $|a_n| < 1$ for all n, and m is the number of zeros in the sequence $\{a_n\}$. D. Protas [4] has shown that if, in addition,

$$(1.2) \qquad \qquad \sum_{n} (1 - |a_n|)^{\alpha} = S < \infty$$

for some α in (0, 1/2), then B' ϵ H^p, that is, the integrals

are bounded when 0 .

The work of O. Frostman [2, Theorem IX] shows that (1.2) with $\alpha > 1/2$ does not necessarily imply the boundedness of the integrals (1.3) on 0 < r < 1 for all positive p.

In this paper we extend the theorem of Protas to higher-order derivatives as follows, and give some relevant counterexamples.

THEOREM 1. Let k be a natural number, and let $\{a_n\}$ be a Blaschke sequence such that (1.2) holds for some α in $\left(0,\frac{1}{k+1}\right)$. Then, if $m=(1-\alpha)/k$, there is a constant C(m,k) such that

(1.4)
$$\int_0^{2\pi} \left| \frac{B^{(k)}(re^{i\theta}, \{a_n\})}{B(re^{i\theta}, \{a_n\})} \right|^m d\theta < C(m, k)S \quad (1/2 < r < 1).$$

Hence $B^{\left(k\right)}$ ε H^{p} for each $\,p$ in (0, m].

At each subsequent appearance, the symbol C denotes a positive constant depending either explicitly or implicitly on the parameters indicated. However the value of C may vary from one appearance to the next.

Received July 7, 1975.

Michigan Math. J. 23 (1976).