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1. INTRODUCTION

A homothety of E3 in the sense of elementary Euclidean geometry is a mapping

of the form x — 7\?; here x and A denote a position vector and a constant. For

subsets A and A of E3 we call a mapping &: A — A a homothety if it is the re-
striction to A of a homothety of E3.

Let S and S denote two smooth (C®), oriented surfaces in E3. Suppose that
there exists a diffeomorphism & between them such that at points and directions
corresponding to each other under &, the normal curvatures k and k satisfy an
equation k = ck, where c is a constant depending on &, but neither on position nor
on direction. If, in addition, S is not a developable surface and has nowhere-dense
umbilics (points where the principal curvatures coincide), then & is a homothety up
to a Euclidean motion. This local result, which actually holds, muialis mutandis,
for hypersurfaces in a space of constant curvature, is a trivial generalization of a
theorem due to R. S. Kulkarni [5, p. 95]. It would be of interest to investigate
whether a similar statement can be made in case the constant ¢ is replaced by a
smooth function ¢ satisfying appropriate assumptions. In this paper we shall show
that if S and S are ovaloids (that is, compact surfaces in E3 with positive Gaussian
curvature), then the condition k = ¢k does indeed imply that S and S are essentially
homothetic, provided we impose on ¢ a certain mild restriction. Several local and
global questions arise naturally; we shall discuss some of them at the end.

We introduce some additional terminology. Let S and S be smooth, two-dimen-
sional Riemannian (or pseudo-Riemannian) manifolds. A diffeomorphism &: S — S
will be called conformal if there exists a smooth function ¢ # 0 on S, the scale
JSunction, with the property < P, a, o, ﬁ>q)(p) = ¢(P) < a, B)p for all points P in S
and all vectors o and B in the tangent space Sp. If (u, v) is a pair of local param-
eters for S, we may carry it over to §, using &, so that corresponding points are
described by the same pair (u, v). We may then say, equivalently, that & is con-
formal if the quadratic forms A and A corresponding to the metrics on S and S
satisfy the condition A = ¢A in these parameters. In the case of surfaces in E3,

“conformal” with no further specification will always mean conformal with respect
to their first fundamental forms.
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