A PROBLEM IN THE CONFORMAL GEOMETRY OF CONVEX SURFACES

Dimitri Koutroufiotis

1. INTRODUCTION

A homothety of E^3 in the sense of elementary Euclidean geometry is a mapping of the form $\overrightarrow{x} \to \lambda \overrightarrow{x}$; here \overrightarrow{x} and λ denote a position vector and a constant. For subsets A and \overrightarrow{A} of E^3 we call a mapping $\Phi \colon A \to \overline{A}$ a homothety if it is the restriction to A of a homothety of E^3 .

Let S and \overline{S} denote two smooth (C^∞) , oriented surfaces in E^3 . Suppose that there exists a diffeomorphism Φ between them such that at points and directions corresponding to each other under Φ , the normal curvatures k and \overline{k} satisfy an equation $\overline{k} = ck$, where c is a constant depending on Φ , but neither on position nor on direction. If, in addition, S is not a developable surface and has nowhere-dense umbilics (points where the principal curvatures coincide), then Φ is a homothety up to a Euclidean motion. This local result, which actually holds, *mutatis mutandis*, for hypersurfaces in a space of constant curvature, is a trivial generalization of a theorem due to R. S. Kulkarni [5, p. 95]. It would be of interest to investigate whether a similar statement can be made in case the constant c is replaced by a smooth function ϕ satisfying appropriate assumptions. In this paper we shall show that if S and \overline{S} are ovaloids (that is, compact surfaces in E^3 with positive Gaussian curvature), then the condition $\overline{k} = \phi k$ does indeed imply that S and \overline{S} are essentially homothetic, provided we impose on ϕ a certain mild restriction. Several local and global questions arise naturally; we shall discuss some of them at the end.

We introduce some additional terminology. Let S and \overline{S} be smooth, two-dimensional Riemannian (or pseudo-Riemannian) manifolds. A diffeomorphism $\Phi\colon S\to \overline{S}$ will be called *conformal* if there exists a smooth function $\phi\neq 0$ on S, the *scale function*, with the property $\left\langle \Phi_*\alpha,\Phi_*\beta\right\rangle_{\Phi(P)}=\phi(P)\left\langle \alpha,\beta\right\rangle_P$ for all points P in S and all vectors α and β in the tangent space S_P . If (u,v) is a pair of local parameters for S, we may carry it over to \overline{S} , using Φ , so that corresponding points are described by the same pair (u,v). We may then say, equivalently, that Φ is conformal if the quadratic forms Λ and $\overline{\Lambda}$ corresponding to the metrics on S and \overline{S} satisfy the condition $\overline{\Lambda}=\phi\Lambda$ in these parameters. In the case of surfaces in E^3 , "conformal" with no further specification will always mean conformal with respect to their first fundamental forms.

Received August 12, 1974.
Partially supported by NSF Grant GP-42833.