THE DERIVATIVE OF A HOLOMORPHIC FUNCTION IN THE DISK

Shinji Yamashita

1. INTRODUCTION

J. E. McMillan pointed out that the derived function of a univalent holomorphic function in the disk D: |z| < 1 is normal in D, in the sense of O. Lehto and K. I. Virtanen [4, p. 47]; for the proof, see [5] or [6]. In this note, we first improve McMillan's result and then investigate relations between local univalency of a holomorphic function f in D and boundary properties of f'. For z, w ϵ D, write

$$\delta(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|, \qquad \gamma(z, w) = \frac{1}{2} \log \frac{1 + \delta(z, w)}{1 - \delta(z, w)}.$$

If $z \in D$ and $f'(z) \neq 0$, let $\tau(z) \equiv \tau(z, f)$ be the greatest value γ such that f is univalent in the hyperbolic disk $\{\xi \in D: \gamma(\xi, z) < \gamma\}$; if f'(z) = 0, we set $\tau(z, f) = 0$. Our first result is the following; it has McMillan's theorem as a corollary.

THEOREM 1. Let f be holomorphic in D, and suppose that

$$\inf_{z \in R(r)} \tau(z, f) > 0,$$

where R(r) is the annulus r < |z| < 1 (0 < r < 1). Then f' is normal in D.

2. PROOF OF THEOREM 1

Let $\rho(z) \equiv \rho(z, f)$ ($z \in D$) be the greatest value δ ($0 < \delta < 1$) such that f is univalent in $\{\zeta \in D: \delta(\zeta, z) < \delta\}$; if f'(z) = 0, we set $\rho(z, f) = 0$.

LEMMA 1. At each point $z \in D$ where $\rho(z, f) > 0$, we have the inequality

$$\left|\frac{f''(z)}{f'(z)} - \frac{2\overline{z}}{1-|z|^2}\right| \leq \frac{4}{\rho(z, f)(1-|z|^2)}.$$

Proof. For a fixed δ ($0 < \delta < \rho(z)$), we set $f_z(\xi) \equiv f(\zeta)$, where $(\zeta - z)/(1 - \bar{z}\zeta) = \delta\xi$ for all $\xi \in D$. Then the function

$$f_z(\xi) = f\left(\frac{z + \delta \xi}{1 + \delta \bar{z} \xi}\right)$$

is univalent in $|\xi| < 1$. Applying the Bieberbach inequality $|b_2| \le 2$ to the coefficient of ξ^2 in the expansion in powers of ξ of the function

Received June 16, 1973.

Michigan Math. J. 21 (1974).