A REMARK ON HOMOTOPY AND CATEGORY DOMINATION

Włodzimierz Holsztyński

M. Mather [2] showed that the set of homotopy types of spaces dominated by (finite) polyhedra is countable (see also [1]). The purpose of this note is to give a simpler proof of a more general result.

Given a category C, we say that a morphism $f: X \to X$ is an *idempotent* if $f \circ f = f$. By I(X) we denote the set of all idempotents of X.

We say X dominates Y provided there exists a domination (h, g), that is, a pair (h: $X \to Y$, g: $Y \to X$) such that $h \circ g = 1_Y$. If (h, g) is a domination, then $g \circ h \in I(X)$, and we say that $g \circ h$ is the idempotent associated with (h, g).

THEOREM 1. If X dominates Y_i with domination (h_i, g_i) , for i = 1, 2, and if the two associated idempotents are the same, then Y_1 is isomorphic to Y_2 .

Proof. The morphisms $h_{3-i} \circ g_i$: $Y_i \to Y_{3-i}$ (i = 1, 2) are isomorphisms, each inverse to the other:

$$(h_i \circ g_{3-i}) \circ (h_{3-i} \circ g_i) = h_i \circ (g_{3-i} \circ h_{3-i}) \circ g_i = h_i \circ (g_i \circ h_i) \circ g_i = 1_{Y_i}$$
 (i = 1, 2).

COROLLARY. The class of isomorphism classes dominated by X has cardinality at most card I(X).

Application. Up to homeomorphism, there are only a countable number of polyhedral pairs and of homotopy classes of mappings of a polyhedral pair into itself; hence, the Corollary yields the following result.

THEOREM 2. The class of homotopy types of topological pairs dominated by polyhedral pairs is countable.

REFERENCES

- 1. J. M. Kister, Homotopy types of ANR's. Proc. Amer. Math. Soc. 19 (1968), 195.
- 2. M. Mather, Counting homotopy types of manifolds. Topology 4 (1965), 93-94.

The University of Michigan Ann Arbor, Michigan 48104

Received April 13, 1971.

This paper was written with support from the National Science Foundation.

Michigan Math. J. 18 (1971).