A REMARK ON HOMOTOPY AND CATEGORY DOMINATION
Wiodzimierz Holsztyfiski

M. Mather [2] showed that the set of homotopy types of spaces dominated by
(finite) polyhedra is countable (see also [1]). The purpose of this note is to give a
simpler proof of a more general result.

Given a category C, we say that a morphism f: X — X is an idempotent if
fof=1f., By I(X) we denote the set of all idempotents of X.

We say X dominates Y provided there exists a domination (h, g), that is, a pair
(h: X— Y, g: Y > X) such that hog =1y . If (h, g) is a domination, then
g o h € I(X), and we say that g o h is the idempotent associated with (h, g).

THEOREM 1. If X dominates Y; with domination (h;, g;), for i =1, 2, and if
the two associated idempotents ave the same, then Y, is isomorphic to Y, .

Proof. The morphisms h; ; og;: ¥, — Y, ; (i =1, 2) are isomorphisms, each
inverse to the other:

(hjogz_j)o(hz_jog)=h;o(gz_;0h3;)og =hjo(goh)og; = ly, i=1,2).

COROLLARY. The class of isomorphism classes dominated by X has cavdinal-
ity at most card I(X).

Application. Up to homeomorphism, there are only a countable number of poly-
hedral pairs and of homotopy classes of mappings of a polyhedral pair into itself;
hence, the Corollary yields the following result.

THEOREM 2. The class of homotopy types of topological paivs dominated by
polyhedral paivs is countable.
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