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1. INTRODUCTION

Throughout this paper, E denotes a complex Banach space, and A represents a
closed operator whose domain D(A) is dense in E and whose range is in E. We as-
sume that the resolvent set p(A) is not empty, in other words, that for some com-
plex number A the operator R(A; A) = (AI - A)~! is everywhere defined and bounded.

We study the problem of existence and uniqueness of solutions of the nth-order
operational differential equation

(1.1) ul?(t) = Au(t) (t>0)
that satisfy an estimate of the form

(1.2) |u(t)] = 0O(e®’) ast—+w
and the initial conditions

(1.3) ulk)(0) = y € E (kea).

Here, w denotes a real number, n is an integer (n > 1), and « is a predetermined
subset of the set {0, 1, -+, n - 1}. We also study the dependence of the solutions on
the incomplete set of initial data (1.3). (By a solution of (1.1) we mean an E-valued
function u that has n continuous derivatives and satisfies (1.1) for t > 0.) This is a
generalization of the usual Cauchy problem, where growth conditions of the type (1.2)
are absent but where @ in (1.3) consists of all the integers 0, 1, ---, n - 1, in other
words, where each of the values u(k)(0) (k=0, 1, **-, n - 1) is preassigned. In
order to delineate clearly the results in the present paper, we sketch briefly the
available results in the usual case. We say that the problem

(1.4) uld(t) = Au(t) (£>0),
(1.5) ulk)(0) = v, (O0<k<n-1)

is well posed if solutions of (1.4), (1.5) exist (their initial data ug, uy, =+, uy_3
arbitrarily chosen in a given dense subspace of E) and depend continuously on

ug, u;, v, u,_1. For n =1 the problem (1.4), (1.5) is well posed if and only if A
generates a strongly continuous semigroup (see [12, especially Chapter I, Section 2,
Theorem 2.8] and [7, Part I, Theorem 4.1]). Generators of strongly continuous
semigroups are in turn characterized by the theorem of E. Hille and K. Yosida (see
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