AMBIGUOUS POINTS OF HOLOMORPHIC FUNCTIONS OF SLOW GROWTH

R. L. Hall

1. INTRODUCTION

Let f denote a holomorphic function in the open unit disc D. An $arc\ at\ e^{i\,\theta}$ is a curve $J\subset D$ such that $J\cup \left\{e^{i\,\theta}\right\}$ is a Jordan arc. The complex number a $(a=\infty)$ is admitted) is an $asymptotic\ value$ of f at $e^{i\,\theta}$ if there exists an arc at $e^{i\,\theta}$ on which f has the limit a at $e^{i\,\theta}$. Let $\Gamma(f,e^{i\,\theta})$ denote the set of asymptotic values of f at $e^{i\,\theta}$. If $\Gamma(f,e^{i\,\theta})$ contains at least two values, then $e^{i\,\theta}$ is called an $ambiguous\ point$ of f.

It follows from the work of E. Lindelöf [8] that an f omitting two finite values has no ambiguous points (for a generalization of this result, see [7]). However, a result of W. Gross [5] can be used to show that even if f omits only one finite value, $\Gamma(f, 1)$ may nevertheless contain every complex number. By F. Bagemihl's ambiguous-point theorem [1], the set of ambiguous points of any f is at most countable. Ambiguous points of various classes of functions have been studied in [2], [3], [4], and [10].

Suppose $a \in \Gamma(f, e^{i\theta})$, and let J be an arc at $e^{i\theta}$ on which f has the limit a at $e^{i\theta}$. For each $\epsilon > 0$, let $G(a, J, \epsilon)$ denote the component of $\{z: |f(z) - a| < \epsilon\}$ (of $\{z: |f(z)| > \epsilon^{-1}\}$ if $a = \infty$) such that $G(a, J, \epsilon) \cap J$ contains an arc at $e^{i\theta}$. The collection $\{G(a, J, \epsilon): \epsilon > 0\}$ is called the *tract* (or asymptotic tract) of f at $e^{i\theta}$ associated with the asymptotic value a and determined by J. Let

$$T_a = \{G(a, J, \epsilon): \epsilon > 0\}$$
 and $T_b = \{G(b, J', \epsilon): \epsilon > 0\}$

be tracts of f at $e^{i\,\theta}$. Then T_a and T_b are *distinct* if there exists an $\epsilon>0$ such that $G(a,J,\epsilon)\cap G(a,J',\epsilon)=\emptyset$. Note that the tracts are automatically distinct if $a\neq b$. However, more than one tract may be associated with an element $a\in\Gamma(f,e^{i\,\theta})$.

Let $n_*(f, e^{i\,\theta})$ $(n_\infty(f, e^{i\,\theta}))$ denote the cardinal number of the set of tracts of f at $e^{i\,\theta}$ associated with finite (infinite) asymptotic values. For 0 < r < 1, let M(f, r) denote the maximum modulus of f on the circle $\{z: |z| = r\}$, and for x > 0, let $\log^+ x = \max(\log x, 0)$. G. R. MacLane [10, p. 54] has obtained the following results:

(A) if
$$\int_0^1 \log^+ M(f, r) dr < \infty$$
, then

$$n_*(f, e^{i\theta}) < 1$$
 and $n_{\infty}(f, e^{i\theta}) < 2$ for each θ ;

Received February 12, 1970.

This work was supported in part by a grant from the Wisconsin Alumni Research Foundation.

Michigan Math. J. 18 (1971).