ON TWO INVARIANT σ -ALGEBRAS FOR AN AFFINE TRANSFORMATION

Nobuo Aoki

1. INTRODUCTION

Suppose G is a compact, connected, abelian group and T $(T: G \to G)$ is an ergodic affine transformation. We shall prove that the maximal factor transformation of T with quasi-discrete spectrum is the maximal factor of T whose entropy is zero. This result was first obtained by W. Parry [5] for the case where G is metrizable. I benefitted from reading the papers by W. Parry [5] and P. Walters [6], and I am grateful to the referee for helpful suggestions.

2. PRELIMINARIES

An affine transformation T of a compact, connected, abelian group G is a transformation of the form T(x) = a A(x) ($x \in G$), where A is a continuous group automorphism of G and where $a \in G$. Such transformations T preserve Haar measure. For a compact, connected, abelian group G with Haar measure m, we consider the normalized measure space (G, E, m), where E is the completion of the σ -algebra generated by the open subsets of G (it is not a Lebesgue space, since G is nonmetrizable).

A collection $\eta = \{E_t\}$ of \mathcal{E} -measurable sets with the property that

$$\bigcup_{t} E_{t} = G \quad \text{and} \quad E_{t} \cap E_{t'} = \emptyset \ (t \neq t')$$

is called an E-measurable partition.

If ζ is an \mathcal{E} -measurable partition, we denote by $\mathcal{B}(\zeta)$ the σ -algebra generated by the members of ζ . Then $\mathcal{B}(\zeta)$ is a sub- σ -algebra of \mathcal{E} . Suppose $\{\zeta_{\alpha}\}$ is a collection of \mathcal{E} -measurable partitions. Then the algebra generated by $\bigcup_{\alpha} \mathcal{B}(\zeta_{\alpha})$ consists of finite unions of sets of the form $\bigcap_{j=1}^{n} A_{\alpha_{j}}$, where $A_{\alpha_{j}} \in \mathcal{B}(\zeta_{\alpha_{j}})$ and $\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\}$ is a finite subset of the collection of indices. By $\bigvee_{\alpha} \mathcal{B}(\zeta_{\alpha})$, we denote the σ -algebra generated by $\bigcup_{\alpha} \mathcal{B}(\zeta_{\alpha})$.

Suppose η is an $\mathfrak E$ -measurable partition of G; then H denotes the projection of G onto the factor space G_η ; in other words, H maps a point of G onto the element of η to which it belongs. If $T\eta = \eta \pmod 0$, then the factor transformation T_η is induced by T, that is, $T_\eta = HTH^{-1}$.

Let \mathfrak{E}_{η} be the σ -algebra generated by the subsets of G_{η} that belong to the subscale σ -algebra $\mathscr{B}(\eta)$, and let m_{η} denote the measure on \mathfrak{E}_{η} induced by m. Then T_{η} is an automorphism of the factor space $(G_{\eta}$, \mathfrak{E}_{η} , m_{η}), and

Received June 30, 1969.

Michigan Math. J. 17 (1970).