ON ADDITIVE FUNCTIONS

C. Ryavec

Introduction. A number-theoretic function f is said to be additive if f(mn) = f(m) + f(n) whenever (m, n) = 1; we denote the class of such functions by \mathcal{A} . Because of the special nature of the subclass \mathcal{B} of functions of the form $f(n) = c \log n$, it is of interest to find conditions on functions f in \mathcal{A} under which f is also in \mathcal{B} .

The first investigation in this direction was made by P. Erdös [1], who proved that if $f \in \mathcal{A}$ and $f(n+1) - f(n) \geq 0$ for each natural number n, then $f \in \mathcal{B}$. Erdös conjectured that the same conclusion holds if the monotonicity condition is relaxed to the requirement that $f(n+1) - f(n) \geq 0$ for almost all n, and this conjecture was subsequently proved by I. Kátai [2]. Erdős also proved that if $f \in \mathcal{A}$ and $\lim_{n \to \infty} [f(n+1) - f(n)] = 0$, then $f \in \mathcal{B}$, and he conjectured that the condition on f(n+1) - f(n) can be replaced by the condition

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n< x}|f(n+1)-f(n)|=0.$$

The last conjecture was recently established by Kátai (proof to appear). E. Wirsing subsequently found an elegant proof of this result, and since the proof of Theorem 1 is based on some of the ideas in his proof, we shall give an outline of his method, at the end of Lemma 3.

Finally, we mention a long-standing conjecture of Erdös, recently proved by Wirsing [3]:

THEOREM (Wirsing). Suppose that $f \in \mathcal{A}$ and that the set of differences f(n+1) - f(n) is bounded. Then $f(n) = c \log n + g(n)$, where g is a bounded, additive function.

Some time ago, I conjectured that the following is true:

CONJECTURE. If $f \in A$ and

(1)
$$\lim_{x\to\infty}\inf\frac{1}{x}\sum_{n\leq x}|f(n+1)-f(n)|=0,$$

then $f \in \mathcal{B}$.

The conjecture is still open; but in this paper I prove the following weaker version of it.

THEOREM 1. Let $f \in \mathcal{A}$, and let f satisfy condition (1) and

$$f(n) = O(\log n).$$

Then $f \in \mathcal{B}$.

I shall also prove the following result.

Received May 14, 1969.