WILD POINTS OF CELLULAR SUBSETS OF SPHERES IN S³, II

L. D. Loveland

The set of wild points of a cellular finite graph on a 2-sphere in S^3 is either empty or degenerate, or it contains an arc [6, Theorem 1]. Furthermore, such a finite graph cannot contain two isolated wild points [6, Theorem 2]. The purpose of this note is to indicate how we can use a theorem recently proved by D. R. McMillan, Jr. [9, Theorem 1], together with the results of [6], to obtain similar results for arbitrary cellular subsets of 2-spheres in S^3 .

A key to the proofs in [6] is the result by Burgess [4] that a 2-sphere S in S^3 has at most two wild points if each component of S^3 - S is an open 3-cell and S is locally tame modulo a 0-dimensional set.

A subset X of S³ is said to be cellular if there exists a sequence of 3-cells C_1 , C_2 , \cdots such that $X = \bigcap_{i=1}^{\infty} C_i$ and $C_{i+1} \subset \operatorname{Int} C_i$ for each i. (For other definitions, consult the references.)

THEOREM 1. A cellular subset of a 2-sphere S in S^3 cannot contain two isolated wild points of S.

Proof. Suppose X is a cellular subset of S such that X contains two isolated wild points p and q of S. Some arc A in S contains points p and q such that A is locally tame modulo $\{p, q\}$ (see [7] or [8]), and some disk D containing $X \cup A$ is locally polyhedral modulo $X \cup A$ [2]. Since A is locally tame modulo two points of X, we see that D is locally tame modulo X [5]; hence D is cellular. According to McMillan [9], this implies that A is cellular. It follows that A is locally tame either at p or at q [6], say at p. Since p is an isolated wild point of S and p lies in a tame arc in S, we have a contradiction [5].

Note. There are examples of cellular arcs that lie on a 2-sphere and contain exactly two wild points [1] (in fact, infinitely many wild points [3]) of the sphere.

THEOREM 2. If X is a cellular subset of a 2-sphere S in S^3 such that S is locally tame modulo X and the set W of wild points of S is 0-dimensional, then W contains at most one point.

Proof. There exists an arc A in S containing W [10], and there exists a disk D in S such that $A \cup X \subset D$. Since D is locally tame modulo X, it follows that D is cellular; hence A is also cellular [9]. Therefore A has at most one wild point [6], and it follows from [5] that W contains at most one point.

THEOREM 3. If X is a cellular subset of a 2-sphere S in S^3 and S is locally tame modulo X, and if W is the set of wild points of S, then either W is empty, W is degenerate, or W contains a nondegenerate continuum.

Furthermore, if U is an open subset of S such that U \cap W is 0-dimensional, then W \cap U contains at most one point.

Proof. Suppose every continuum in W is degenerate. Then W is totally disconnected—hence W is 0-dimensional. It follows from Theorem 2 that W contains at most one point.

Received August 29, 1967.