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All spaces considered in this paper are compact metric spaces. Amap 1 X—Y
of a space X onto Y is an g-map (¢ > 0) provided diam f-1(y) < ¢, for each y € Y.
If II is a class of polyhedra, we say that X is II-Ilike provided for each € > 0 there
exists a polyhedron P € II and an ¢-mapping f: X — P onto P (P and f depend on
£) (see Definition 1 in [5]). By an n-manifold we mean a closed connected triangu-
lable manifold of dimension n. We are interested in II-like continua, where II is a
class of n-manifolds. The following is our main result.

THEOREM 1. Let X be a IlI-like n-dimensional absolute neighborhood retract,
wheve Il is a class of n-manifolds. Then X is a locally orientable, n-dimensional
genevalized closed manifold over every prvincipal ideal domain L (n-gcm L). If 11 is
a class of ovientable n-manifolds, then X is also orvientable.

For the definitions of these notions, see [6] and [1] (see also [9]).

Theorem 1 was proved in [6] for the case where II is a class of orientable n-
manifolds. The consequences stated there for the orientable case are now estab-
lished without this restriction.

Theorem 1 follows from Theorem 1 in [6] and the following result.

THEOREM 2. Let X be a Il-like, n-dimensional absolute neighbovhood vetract,
where 11 is a class of nonorientable n-manifolds P. Let il denote the class of
ovientable n-manifolds P that ave the 2-fold coveving spaces of P. Then X admits
a 2-fold coveving space X that is a Ti-like continuum.

Remavrk. Recall that every (triangulablel nonorientable n-manifold P has a
uniquely determined 2-fold covering space P that is a (triangulable) orientable n-
manifold (see for example [7, pp. 271-272]).

To see that Theorem 2 and [6] imply Theorem 1, consider a Ii-like, n-dimen-
sional ANR X, where II is a class of n-manifolds. By a theorem of T. Ganea [3],
there exists an € > 0 such that all e-maps of X onto an n-manifold are homotopy
equivalences. Therefore, there exists a subclass Il C II each of whose members
is of the same homotopy type as X, and X is IIp-like. Consequently, either all
manifolds in II; are orientable, or all are nonorientable. In the first case, X must
be an orientable n-gem;g,, by Theorem 1 of [6]. In the second case, we apply Theo-
rem 2 to obtain a 2-fold covering space X of X thatis a Ho -like contmuum The
spaces X and X are locally homeomorphic, and therefore X inherits the local
properties of X. By a theorem of K. Borsuk [2], a compact metric space is an n-
dimensional ANR if and only if it is n-dimensional and locally contractible. Since
the latter properties are local, we may conclude that X is also an n-dimensional
ANR. The class i, consists of orientable n-manifolds, and so Theorem 1 of [6]
implies that X is an orientable (and hence locally or1entab1e) n-gemry,. Since local
orientability is a local property, we conclude that X is a locally orientable n-gcmy, .
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