CHARACTERISTIC NUMBERS AND HOMOTOPY TYPE

P. J. Kahn

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Ω denote the oriented cobordism ring (see [10]), and [M] the oriented cobordism class of the C^{∞} -manifold M, which we assume to be closed, compact, and oriented, but not necessarily connected. Ω is graded by manifold dimension. In Ω_n , let I_n denote the set of all classes of the form [M] - [M'], where M and M' are n-manifolds of the same oriented homotopy type. It is clear that I_n is a subgroup of Ω_n and that the graded group $I = (I_0, I_1, I_2, \cdots)$ is an ideal in Ω .

The following result follows easily from the definitions and from certain elementary facts about Pontrjagin and Stiefel-Whitney numbers.

THEOREM 1. I_n is a free abelian group. If $n \not\equiv 0 \pmod 4$, then $I_n = 0$. If $n \equiv 0 \pmod 4$, then co-rank $I_n \geq 1$, where co-rank $I_n = \operatorname{rank} (\Omega_n/I_n)$.

Note that since $\Omega_4 \simeq Z$ (this is well-known), Theorem 1 implies that $I_4 \simeq 0$.

Atiyah and Hirzebruch prove, in [1], that Pontrjagin classes are homotopy invariants (mod 8). We use this to prove the following assertion.

THEOREM 2. The members of In are divisible by 8.

The results of [5]—see the proof of Theorem 3 in Section 3, below—imply the following.

THEOREM 3. $\Omega \otimes Q \simeq Q[Y_4] \oplus (I \otimes Q)$.

(Explanation of notation: Q denotes the field of rational numbers, $Q[Y_4]$ denotes the polynomial ring over Q generated by some $Y_4 \in \Omega_4 \bigotimes Q$, and the symbol \bigoplus denotes vector-space direct sum.)

COROLLARY 3.1. $I \otimes Q$ is a prime ideal in $\Omega \otimes Q$.

COROLLARY 3.2. co-rank $I_{4k} = 1$.

COROLLARY 3.2.1. There is, up to a rational multiple, only one homotopy-invariant rational linear combination of Pontrjagin numbers (the L_k -genus (see [4, p. 13]), being such a combination).

In [9], Tamura constructs certain 8-manifolds representing nontrivial elements of I_8 ; in [5], we extend his results to dimension 12. This enables us to obtain partial information about generators for I_8 and I_{12} .

THEOREM 4. Let X_i denote the class in Ω_{4i} of complex projective 2i-space (i = 1, 2, 3), and let $A = X_2 - X_1^2$, $B = X_3 - X_2X_1$. Then

- (i) $I_{\,8}$ is generated by $2^n\cdot 48A,$ for some integer n (0 $\leq n \leq$ 3), and
- (ii) I_{12} has rank 2 and contains $384X_1$ A and 576B; all elements of I_{12} are of the form rX_1 A + sB, where $r \equiv 0 \pmod{24}$ and $s \equiv 0 \pmod{72}$.

Received September 8, 1964.

While preparing this paper, the author was supported by NSF Contract GP-2497.