PACKING INEQUALITIES FOR CIRCLES

Philip J. Davis

1. INTRODUCTION

Let the three non-overlapping discs C_1 , C_2 , C_3 lie inside the unit disc C: $|z| \leq 1$. Let r_i (i = 1, 2, 3) designate the radius of C_i , and let d_i designate the distance from the center of C_i to the origin. Then

(1)
$$d_1 d_2 d_3 + r_1^2 + r_2^2 + r_3^2 \le 1.$$

In this paper, we shall prove (1) and similar inequalities for nonoverlapping discs C_i contained in the unit disc C. Let C_i designate the open disc

$$(x - x_i)^2 + (y - y_i)^2 < r_i^2$$
 (i = 1, 2, ..., n).

Our goal is to find simple inequalities relating the quantities x_i , y_i , r_i . As for example, from geometry, we see that a necessary and sufficient condition that C_i and C_j do not overlap is that $(x_i - x_j)^2 + (y_i - y_j)^2 \ge (r_i + r_j)^2$.

2. INEQUALITIES DERIVED FROM REAL VARIABLE THEORY

Note that if f(x, y) is a non-negative integrable function defined on C, then

(2)
$$\sum_{i=1}^{n} \int \int_{C_{i}} f(x, y) dx dy \leq \int \int_{C} f(x, y) dx dy.$$

Received September 5, 1962.