THE AUTOMORPHISM GROUP OF THE FREE GROUP WITH TWO GENERATORS

Bomshik Chang

Let F be the free group generated by a and b, and let F' denote the derived group [F, F] of F. The main purpose of this note is to prove

THEOREM 1. An automorphism G of F is an inner automorphism if $G(a) \equiv a$, $G(b) \equiv b \pmod{F'}$.

As an immediate consequence of Theorem 1, we have

THEOREM 2. Let A and I be the automorphism group and the inner automorphism group of F, respectively. Then the group A/I is isomorphic to the group of two-by-two matrices with integer coefficients and with determinants ± 1 .

Proof of Theorem 1. It is known [2], [3] that A is generated by the three automorphisms

P:
$$a \rightarrow b$$
, $b \rightarrow a$, Q: $a \rightarrow a^{-1}$, $b \rightarrow b$, U: $a \rightarrow ab$, $b \rightarrow b$.

Let V be the automorphism V: $a \rightarrow a$, $b \rightarrow ba$; then we have

(1)
$$PU = VP, PU^{-1} = V^{-1}P,$$

(2)
$$QU \equiv U^{-1}Q \pmod{I}.$$

(The symbol $G_1 G_2$ denotes the automorphism G_1 followed by G_2 . Thus

$$G_1 G_2: a \to G_2(G_1(a)), b \to G_2(G_1(b)).$$

Using the above relations, we may write an automorphism

$$G = P^{\delta_1} Q^{\epsilon_1} U^{\lambda_1} \cdots p^{\delta_k} Q^{\epsilon_k} U^{\lambda_k}.$$

where $\delta_1, \epsilon_1, \cdots, \delta_k, \epsilon_k$ are 0 or 1 and $\lambda_1, \cdots, \lambda_k$ are integers, as

$$G \equiv U^{\mu_1} V^{\nu_1} \cdots U^{\mu_j} V^{\nu_j} W \pmod{I} ,$$

where μ_1 , ν_1 , ..., μ_j , ν_j are integers and W is a word in P and Q.

Let

R:
$$a \rightarrow a^{-1}$$
, $b \rightarrow b^{-1}$, S: $a \rightarrow b$, $b \rightarrow a^{-1}$, T: $a \rightarrow b^{-1}$, $b \rightarrow ba$.

We have

$$S^2 = R,$$

Received November 25, 1959.

This research was done while the author was a fellow of the Summer Research Institute of the Canadian Mathematical Congress during the summer of 1959.