CUBIC CONGRUENCES

D. J. Lewis

1. INTRODUCTION

It has been conjectured that there exists a positive integer N such that every homogeneous cubic polynomial equation over an algebraic number field in at least N variables has a nontrivial solution in that field. It is known [2] that if such an N exists, then $N \geq 10$. In an attempt to determine an upper bound on N we were led to the problem of determining the smallest integer M such that if m is an ideal in a ring \triangle of algebraic integers, then every congruence of the form

$$\sum_{i=1}^{n} \alpha_{i} x_{i}^{3} \equiv 0 \pmod{m} \qquad (\alpha_{i} \text{ in } \triangle, n \geq M)$$

has a solution in \triangle which is nontrivial, modulo each prime factor of \mathfrak{m} . The results of [2] can be used to show that M need not exceed ten. It is our purpose here to show that M=7 will suffice, and that no smaller value will do. In showing this fact, we consider diagonalized cubic forms over finite fields and over \mathfrak{p} -adic fields.

2. DIAGONALIZED CUBICS OVER FINITE FIELDS

THEOREM 1. If k is a finite field and a, b and c are in k, then the equation

(1)
$$ax^3 + by^3 + cz^3 = 0$$

has a nontrivial solution in k.

Assume that k has characteristic p; then k has $q = p^f$ elements. Let k^* be the group of nonzero elements of k, and let k^3 be the group of cubes of k^* . If a is in k^3 , so are (a^{-1}) and (-a). If $q \not\equiv 1 \pmod 3$, there exist integers s and t such that 1 = (q-1)s+3t, hence $a = (a^t)^3$, and we have $k^* = k^3$. If $q \equiv 1 \pmod 3$, then $k^3 \not\equiv k^*$. In fact, k^3 contains exactly (q-1)/3 elements, and if δ is not in k^3 , then $k^* = k^3 \cup \delta k^3 \cup \delta^2 k^3$.

We may assume that $abc \neq 0$; otherwise the result is trivially true. If ab^{-1} is in k^3 , say $e^3 = ab^{-1}$, then (1, -e, 0) is a solution of (1). We obtain similar solutions if ac^{-1} or bc^{-1} are in k^3 . Thus we are left with the case where a, b and c lie in different cosets of k, modulo k^3 , a situation which can only occur if $q \equiv 1 \pmod{3}$. The following lemma completes the proof of Theorem 1.

LEMMA 1. If $q \equiv 1 \pmod{3}$ and k is a field of q elements, then there exists a nonzero element δ of k which is not in k^3 and such that the equation

$$1 + \delta = \delta^2 z^3$$

has a solution in k.

Received January 5, 1956.