Close-to-Convex Schlicht Functions

by

Wilfred Kaplan

l. Principal results. Known theorems yield the following: if $\phi(z)$ is a convex schlicht function for |z| < R and f(z) is a function analytic for |z| < R such that

Re
$$\left[\frac{f'(z)}{\phi'(z)}\right] > 0$$
, $|z| < R$,

then f(z) is also schlicht for |z| < R. Since the vectors f', ϕ' never differ in direction by more than 90° , it is natural to call f close-to-convex:

Definition. Let f(z) be analytic for |z| < R. Then f(z) is close-to-convex for |z| < R if there exists a function $\phi(z)$, convex and schlicht for |z| < R, such that $f'(z)/\phi(z)$ has positive real part for |z| < R.

When R = l, it will be convenient to omit reference to the circular domain of definition. Therefore, a close-to-convex function will mean a function which is close-to-convex for |z| < 1.

We verify that the close-to-convex functions include several familiar classes of schlicht functions: e.g., the star functions, as well as some less familiar ones: e.g., the functions f(z) having a Poisson integral representation in terms of a function $P(e^{i\theta})$ which is monotone in θ within each of two complementary arcs of |z|=1.

It is of interest to characterize the close-toconvex functions intrinsically, without reference to a