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Introduction

An important aspect of modern commutative algebra is the study of the structure
of finite free resolutions. The first significant result in this direction goes back to
Hilbert [22]; in its most general form, due to Burch [11], it describes the struc-
ture of free resolutions of length 2 whose component in degree 0 is a free module
of rank 1. This theorem was generalized by Buchsbaum and Eisenbud [10], who
obtained structure theorems for arbitrary finite free resolutions. The question of
whether these are the “best possible” structure theorems was one of the topics of
Hochster’s influential CBMS lectures [23]. Hochster’s approach to this problem
is to describe a generic resolution of a given type from which all other resolutions
of the same type are obtained by base change.

To be specific, letR be a commutative algebra over a (fixed) base ringk, and
let

F = 0−→ Rbn X(n)−−→ Rbn−1 −→ · · · −→ Rb1
X(1)−−→ Rb0 −→ 0 (†)

be a complex, whereX(k) = (x(k)ij ) 6= 0 is the matrix of thekth differential in the
standard bases ofRbk andRbk−1, k = 1, . . . , n. Hochster calls the pair(R,F) a
universal pairif F is acyclic and if, for each commutativek-algebraS and each
free resolution

G = 0−→ S bn
Z(n)−−→ S bn−1 −→ · · · −→ S b1

Z(1)−−→ S b0 −→ 0, (‡)

there exists a uniquek-algebra homomorphismu : R → S such thatu(x(k)ij ) =
z(k)ij ; thusG = F⊗R S. When it exists, a universal pair(R,F) is determined up to
isomorphism by the sequence of itsBetti numbersb = (b0, . . . , bn);we callR the
universal ring of typeb overk, andF theuniversal resolution of typeb overk.

A main step in Hochster’s program is to establish the values ofb0, . . . , bn for
which a universal pair exists. Hochster [23] (whenk is either the ring of inte-
gersZ, or a field) and later Bruns [5] (in general) show that, whenn ≤ 2, a
necessary and sufficient condition for existence is that the “expected ranks”rk =∑n

s=k(−1)s−kbs satisfyr0 ≥ 0 andrk ≥ 1 for 1≤ k ≤ n. Whenn ≥ 3, Bruns
[5] shows that universal pairs do not exist, regardless of the choice of the numbers
b0, . . . , bn.
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