Estimates for Nonlinear Harmonic "Measures" on Trees

VENANCIO ALVAREZ, JOSÉ M. RODRÍGUEZ, & DMITRY V. YAKUBOVICH

1. Introduction

This paper concerns the asymptotic behavior of nonlinear analogs of harmonic "functions" on trees. Our study was motivated by some open problems for p-harmonic functions on domains in \mathbf{R}^n . We hope that our results will suggest correct settings for the continuous case.

Fix $\nu \geq 3$, and let the tree T_{ν} be a regular directed graph. The set V_{ν} of its vertices is in one-to-one correspondence with finite words in the alphabet $\mathcal{M} = \{1, 2, ..., \nu\}$. The vertex ν_{\emptyset} is the origin of the tree. The kth generation is

$$G_k = \{v_I : I \in \mathcal{M}^k\},$$

so that

$$V_{\nu} = \bigcup_{k>0} G_k.$$

The set of *children* of a vertex $v_I \in V_v$ is defined as $H_{v_I} = \{v_{I1}, \dots, v_{Iv}\}$. We denote by [v, w] the edge that links the vertices v and w. We define the set of edges E_v of the tree T_v in the following way: the edge $[v, w] \in E_v$ if and only if $w \in H_v$. Observe that if $[v, w] \in E_v$ then $[w, v] \notin E_v$ (T_v is a directed graph).

Let $F: \bar{\mathbf{R}}^{\nu}_{+} \to \bar{\mathbf{R}}_{+}$ be a continuous function such that F(0, 0, ..., 0) = 0 and F(1, 1, ..., 1) = 1 (here $\bar{\mathbf{R}}_{+} := [0, \infty)$ is the positive closed half-axis and $\bar{\mathbf{R}}^{\nu}_{+} := (\bar{\mathbf{R}}_{+})^{\nu}$). We say that such a function F is *admissible*. In what follows, we consider only admissible functions. We understand $F(x_1, x_2, ..., x_{\nu})$ as a kind of nonlinear mean of the arguments $x_1, x_2, ..., x_{\nu}$.

Let $n \geq 1$, and let ϕ be a function on $G_0 \cup \cdots \cup G_n$. We say that ϕ is *F-harmonic* if

$$\phi(v_I) = F(\phi(v_{I1}), \phi(v_{I2}), \dots, \phi(v_{Iv}))$$

for any $v_I \in G_0 \cup \cdots \cup G_{n-1}$.

If A is a subset of vertices contained in G_n then we define the F-harmonic "measure" of A, denoted by $\omega_F(v, A)$, as the function defined in $G_0 \cup \cdots \cup G_n$

Received June 12, 2000. Revision received January 29, 2001.

Research of the first and the second authors was partially supported by a grant from DGICYT (MEC) Spain. Research of the third author was partially supported by a stipend conceded by the Interministerial Commission of Science and Technology of Spain.