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0. Introduction

Let X = P n, and let Y ⊂ X be a hypersurface defined by a reduced polynomial f
of degree d. Set U = X \ Y. Let F and P denote, respectively, the global Hodge
and pole order filtrations on the cohomology Hn(U, C) (see [5; 6]). Locally it is
easy to calculate the difference between these two filtrations at least in the case
of isolated weighted homogeneous singularities; see (1.3.2) in the next section.
However, this is quite nontrivial globally (i.e., on the cohomology). It is impor-
tant to know when the two filtrations coincide globally, since the Hodge filtration
and especially the Kodaira–Spencer map can be calculated rather easily if they
coincide (see [9, Thm. 4.5]). It is known that they are different if Y has bad sin-
gularities (see [7] and also [9, 2.5]). In case the singularities consist of ordinary
double points, however, it was unclear whether they still differ globally. They co-
incide for n = 2 in this case [7; 9], but the calculation for the case n > 2 is quite
complicated in general. In this paper we prove the following result.

Theorem 1. Assume d = 3 with n ≥ 5 or d = 4 with n ≥ 3. Set m = [n/2], and
assume that 1+ (n+1)/d ≤ p ≤ n−m. Then, for a sufficiently general singular
hypersurface Y, we have Fp �= Pp on Hn(U, C).

Here a sufficiently general singular hypersurface is one that corresponds to a point
of a certain (sufficiently small) nonempty Zariski-open subset ofD\SingD, where
D is the parameter space of singular hypersurfaces of degree d in P n; see Sec-
tion 3.6. In particular, Sing Y consists of one ordinary double point. It is unclear
whether the two filtrations differ whenever SingY consists of one ordinary dou-
ble point. According to Theorem 1, the formula for the Kodaira–Spencer map in
[9, Thm. 4.5] is effective only for p > n − m in the ordinary double point case.
By Theorem 2, however, we can show a similar formula in the ordinary point case
that is valid also for p ≤ n − m; see Corollary 4.5. In the case of n odd, we can
also use the self-duality for the calculation of the Kodaira–Spencer map; see Re-
mark 3.9(ii).
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