CONCERNING THE ORDER STRUCTURE OF KÖTHE SEQUENCE SPACES, II

A. L. Peressini

1. INTRODUCTION

This paper investigates the order structure of the space $L(\lambda, \mu)$ of weakly continuous linear mappings of a sequence space λ into another sequence space μ . The weak topologies referred to here are those formed with respect to the respective α -duals of λ and μ , while the order structure of $L(\lambda, \mu)$ is that generated by the positive mappings in $L(\lambda, \mu)$ when λ and μ are equipped with their natural order. We shall use several important results concerning the algebraic structure of $L(\lambda, \mu)$ that are found in the fundamental paper [6] of G. Köthe and O. Toeplitz and in the work of H. S. Allen (see [1] and Chapter 6 of [4]). We shall also use the results and terminology of our earlier work [8].

2. PRELIMINARY MATERIAL

Throughout this paper we shall assume that λ and μ are real sequence spaces containing the space ϕ of sequences with only a finite number of nonzero components. The positive cones of sequences with nonnegative components in λ and μ will be denoted systematically by K_{λ} and K_{μ} , respectively; K_{λ}^{\prime} and K_{μ}^{\prime} will denote the corresponding dual cones in the α -duals λ^* and μ^* of λ and μ , respectively. We shall always assume that λ is a solid; that is, if $|x| \leq |y|$ and $y \in \lambda$, then $x \in \lambda$ (here $|x| = (|x_i|)$ denotes the lattice-theoretic absolute value of x in λ). We refer the reader to [5] and [8] for further details concerning the topological and order-theoretic properties of sequence spaces.

A matrix transformation on λ into μ is an infinite matrix $A = (a_{ij})$ with the following properties:

- (M₁) For each $x = (x_j) \in \lambda$, the series $\sum_{j=1}^{\infty} a_{ij} x_j$ converges absolutely for each i.
- (M₂) For each $x = (x_j) \in \lambda$, the equation $y_i = \sum_{j=1}^{\infty} a_{ij} x_j$ defines an element $y = (y_i)$ of μ .

If $A=(a_{ij})$ is a matrix transformation on λ into μ , then the mapping y=Ax defined by (M_2) is clearly a linear mapping of λ into μ . On the other hand, if T is a linear mapping of λ into μ and if there exists a matrix transformation A of λ into μ such that Tx=Ax for all $x\in \lambda$, then T is represented by A. If T is represented by a matrix transformation A, then A is unique, since λ contains the "unit vectors" $e^{(k)}=(\delta_{ik}\colon i=1,\,2,\,\cdots)$ (δ_{ik} denotes the Kronecker delta). The following result, essentially due to G. Köthe, O. Toeplitz, and H. S. Allen, is stated here in a form convenient for our purposes.

(2.1) PROPOSITION. The following conditions on a linear mapping T of λ into μ are equivalent:

Received February 10, 1964.

This work was supported in part by a National Science Foundation contract.