LOCALLY PROJECTIVE SPACES OF DIMENSION ONE

Nicholaas H. Kuiper

Let P be the real projective line, and let \widetilde{P} be the universal covering space of P with the lifted projective structure. Topologically, \widetilde{P} is an interval. Every projective mapping of a neighborhood in \widetilde{P} onto another neighborhood is the restriction of a unique projective homeomorphism of \widetilde{P} onto \widetilde{P} . A projective transformation of P can be expressed with respect to homogeneous or nonhomogeneous preferred coordinates as follows:

homogeneous coordinates: $(X, Y) \rightarrow (X^*, Y^*) = (aX + bY, cX + dY), ad-bc \neq 0$;

nonhomogeneous coordinates: $(X = xY) \times x^* = \frac{ax + b}{cx + d}$.

A locally projective space Z of dimension 1 is a manifold and a complete (that is, not properly contained in a larger) atlas of mutually compatible homeomorphisms, called maps, of neighborhoods in Z onto neighborhoods in \widetilde{P} . Two maps $f: U \to U'$ and $g: V \to V'$ are compatible if, for each connected component W of the intersection $U \cap V$, the mapping gf^{-1} restricted to f(W) is a projective transformation in \widetilde{P} .

Two maps in the atlas, both covering the point z in Z, are said to be equivalent at z if their restrictions to some neighborhood of z coincide. Following Ehresmann [2], we call an equivalence class of maps in the atlas, all covering z, a local jet, and we denote it by j_z . A topology in the set of jets can be introduced by giving a base for the open sets as follows: the set of jets (that is, of equivalence classes of maps) which contain a map is an open set in the space of jets.

A connected component of the space of jets is a covering space of Z, with the projection $j: j_Z \to z$. The mapping which sends a jet j_Z of this covering space into the image in \tilde{P} of the point z under each of the maps of the equivalence class j_Z is a homeomorphism onto an interval in \tilde{P} . This interval can therefore be considered as the universal covering space \tilde{Z} with lifted locally projective structure of Z.

An analogous theorem and proof, given in [2], exist in the case of the locally homogeneous spaces, where the homogeneous space with a transitive Lie group of transformations takes the place of the projective line in the present article (see [1] to [9]).

There exist only two manifolds of dimension 1, in the topological sense: the open interval and the circle. We consider them separately.

Case A. Z is topologically an interval. Here $\tilde{\mathbf{Z}}$ is projectively equivalent with an interval in $\tilde{\mathbf{P}}$. The classification into projectively different cases is as follows:

A1. $Z = \widetilde{P}$.

A2. Z is one of the two parts into which a point in \tilde{P} divides its complement in \tilde{P} .

Received by the editors in March, 1954.