Notre Dame Journal of Formal Logic Volume IV, Number 3, July 1963

STUDIES ON THE AXIOM OF COMPREHENSION

TH. SKOLEM

In a previous paper in this journal (see [1]) I constructed a model ${\bf M}$ of a set theory such that the axiom

$$(Ey)(x)(x \in y \leftrightarrow \phi(x))$$

is valid, where $\phi(x)$ may contain some parameters z_1, \ldots, z_n and is built by conjunction and disjunction alone from atomic propositions $u \in v$, where u and v are any two of x, z_1, \ldots, z_n . In particular it was also allowed that $\phi(x)$ is just a propositional constant 0 (false) or 1 (true). In this note I shall add a few further results concerning models of set theories for which certain axioms are given. In §1 I first mention some general forms of the comprehension axiom and then prove a further theorem on the model in [1]. In §2 I give a new proof of a result in [2], where a certain 3-valued logic was considered. In §3 I show some further examples of models of set theories in ordinary 2-valued logic.

§1.

We may consider 3 forms of the axiom of comprehension. The first is that partially treated in [1], although I prefer to write it here in the form

(1)
$$(z_1) \ldots (z_n) (Ey) (x) (x \in y \leftrightarrow \phi(x, z_1, \ldots, z_n)),$$

where ϕ is either a propositional constant or built from atomic expressions $u \in v$ by negation, conjunction and disjunction and there are no further variables in ϕ than $x_1 z_1 \dots z_n$. The second form is

(2)
$$(z_1)\ldots(z_m)(Ey)(x)(x\in y \Leftrightarrow \prod_{u_1}\ldots\prod_{u_n}\phi(x,z_1,\ldots,z_m,u_1,\ldots,u_n)),$$

where ϕ as before is built by the connectives of the propositional calculus while each $\prod_{u,r}$ means either universal or existential quantification with re-

gard to u_{τ} . It may be advantagous also to consider a third form

(3)
$$(Ey)(x)(x \in y \Leftrightarrow \prod_{u_1} \ldots \prod_{u_n} \phi(x, u_1, \ldots, u_n)),$$

Received February 7, 1963