S1 ${ }^{\circ}$ AND BROUWERIAN AXIOMS

IVO THOMAS

Using the notation of [1] we discuss the effect of adding one or more Brouwerian axioms B_{n} : (Sp $L^{n} M p(n \geq 1)$ to $\mathrm{S} 1^{\circ}$. We call a set of one or more such axioms sufficient or insufficient according as its addition to $\mathrm{S} 1^{\circ}$ does or does not yield S 5 . The means of proof available in $\mathrm{S} 1^{\circ}$ will be everywhere pre-supposed.

Theorem I. No set of axioms of the form $B_{2 k+1}(k \geq 0)$ is sufficient.
Proof is by the matrix:

K	1	2	3	4	N	M
$* 1$	1	2	3	4	4	1
2	2	2	4	4	3	3
3	3	4	3	4	2	2
4	4	4	4	4	1	4

which satisfies Si° and all $B_{2 k+1}$ but rejects (SpMp.
Theorem II. Any pair $B_{1}, B_{2 k}(k \geq 1)$ is sufficient.
From B_{1} we have (1) $\left(S_{2}^{2} p p ;\right.$ from $B_{2 k}$ we have (2) $\left(S p L^{2(k+1)} p ; k+1\right.$ applications of syllogism to (1), (2) give $(S L p p$ and so $S 1$. But, as is known, $\left\{\mathrm{S} 1, B_{2 k}\right\}=\mathrm{S} 5$.

Theorem III. For all m, n greater than 2 , if m and n are co-prime, then B_{m-1}, B_{n-1} are sufficient.

If m and n are co-prime, there are positive integral r and s such that $r m=s n \pm 1$ and so $r m-1=s n-1 \pm 1$. But B_{m-1} yields $\& L p L^{m+1} p$ if $m>2$, and so, by replacement, $B_{r m-1}$ for all r not less than unity. Similarly from B_{n-1} we can obtain all $B_{s n-1}$, and proceed as follows:

