S1° AND BROUWERIAN AXIOMS

IVO THOMAS

Using the notation of [1] we discuss the effect of adding one or more Brouwerian axioms $B_n : \mathbb{C}pL^nMp \ (n \ge 1)$ to S1°. We call a set of one or more such axioms sufficient or insufficient according as its addition to S1° does or does not yield S5. The means of proof available in S1° will be everywhere pre-supposed.

Theorem 1. No set of axioms of the form B_{2k+1} $(k \ge 0)$ is sufficient.

Proof is by the matrix:

K	1 2 3 4	N	М
* 1	1 2 3 4	4	1
2	2 2 4 4	3	3
3	3 4 3 4	2	2
4	4 4 4 4	1	4

which satisfies S1° and all B_{2k+1} but rejects $\mathbb{C}pMp$.

Theorem II. Any pair B_1 , B_{2k} $(k \ge 1)$ is sufficient.

From B_1 we have (1) CL^2pp ; from B_{2k} we have (2) $CLpL^{2(k+1)}p$; k+1 applications of syllogism to (1), (2) give CLpp and so S1. But, as is known, $\{S1, B_{2k}\} = S5$.

Theorem III. For all m, n greater than 2, if m and n are co-prime, then B_{m-1} , B_{n-1} are sufficient.

If m and n are co-prime, there are positive integral r and s such that $rm = sn \pm 1$ and so $rm - 1 = sn - 1 \pm 1$. But B_{m-1} yields $\textcircled{SLpL}^{m+1}p$ if m > 2, and so, by replacement, B_{rm-1} for all r not less than unity. Similarly from B_{n-1} we can obtain all B_{sn-1} , and proceed as follows: