A REMARK CONCERNING THE THIRD THEOREM ABOUT THE EXISTENCE OF SUCCESSORS OF CARDINALS

BOLESEAW SOBOCIŃSKI

The following three formulas about the existence of successors of cardinals:
S_{1} For every cardinal m there is a cardinal n such that (i) $m<n$, and (ii) the formula $m<p<n$ does not bold for any cardinal p.
\mathbf{S}_{2} For every cardinal m there is a cardinal n such that (i) $m<n$, and (ii) for every cardinal \downarrow the formula $m<p$ implies $n \leq \downarrow$.
S_{3} For every cardinal m there is a cardinal n such that (i) $m<n$, and (ii) for every cardinal \vDash the formula $\vDash<n$ implies $\vDash \leq m$.
are discussed by Tarski in [2] who has shown there that S_{1} can be proved without the help of the axiom of choice and that S_{2} is equivalent to this axiom. Concerning \mathbf{S}_{3} it is remarked in [2], p. 32, that it is not yet known whether S_{3} can be proved without the help of the axiom of choice, and, therefore, a fortiori it is not known whether \mathbf{S}_{3} is equivalent to the said axiom. The latter problem remains open, but according to the announcement given in [1], p. 73, note 2 , the former one is solved in the negative by A. Lewi who has proved that S_{3} does not follow from the axioms of the general set theory, even if the ordering principle is added to these axioms. ${ }^{1}$ As far as I know this result of Mr. Lewi is not yet published.

In this note I show that each of the given below formulas, T_{1} and T_{2}, is such that the axiom of choice follows from it and \mathbf{S}_{3}. The formulas T_{1} and T_{2} are, as I conjecture, probably neither provable without the aid of the axiom of choice nor equivalent to this axiom.

In order to present the formulas T_{1} and T_{2} and the subsequent deductions in a more compact way I introduce here the following abbreviative definition:

D1 For any m and $\mathrm{n}, \mathrm{m}<\mathrm{n}$ if and only if m and n are cardinals, $\mathrm{m}<\mathrm{n}$, and for every cardinal \vDash the formula $\vDash<n$ implies $\vDash \leq m$.

Using this definition we can present \mathbf{T}_{1} and \mathbf{T}_{2} as follows:

