A REMARK CONCERNING THE THIRD THEOREM ABOUT THE EXISTENCE OF SUCCESSORS OF CARDINALS

BOLESŁAW SOBOCIŃSKI

The following three formulas about the existence of successors of cardinals:

- S₁ For every cardinal m there is a cardinal n such that (i) m < n, and (ii) the formula m < p < n does not hold for any cardinal p.
- **S**₂ For every cardinal m there is a cardinal n such that (i) m < n, and (ii) for every cardinal p the formula m < p implies $n \le p$.
- **S**₃ For every cardinal m there is a cardinal n such that (i) m < n, and (ii) for every cardinal p the formula p < n implies $p \le m$.

are discussed by Tarski in [2] who has shown there that S_1 can be proved without the help of the axiom of choice and that S_2 is equivalent to this axiom. Concerning S_3 it is remarked in [2], p. 32, that it is not yet known whether S_3 can be proved without the help of the axiom of choice, and, therefore, *a fortiori* it is not known whether S_3 is equivalent to the said axiom. The latter problem remains open, but according to the announcement given in [1], p. 73, note 2, the former one is solved in the negative by A. Lewi who has proved that S_3 does not follow from the axioms of the general set theory, even if the ordering principle is added to these axioms.¹ As far as I know this result of Mr. Lewi is not yet published.

In this note I show that each of the given below formulas, T_1 and T_2 , is such that the axiom of choice follows from it and S_3 . The formulas T_1 and T_2 are, as I conjecture, probably neither provable without the aid of the axiom of choice nor equivalent to this axiom.

In order to present the formulas T_1 and T_2 and the subsequent deductions in a more compact way I introduce here the following abbreviative definition:

D1 For any m and n, m < n if and only if m and n are cardinals, m < n, and for every cardinal \mathfrak{p} the formula $\mathfrak{p} < \mathfrak{n}$ implies $\mathfrak{p} \leq \mathfrak{m}$.

Using this definition we can present T_1 and T_2 as follows:

Received August 19, 1962