Notre Dame Journal of Formal Logic Volume VIII, Number 3, July 1967

IMPLICATIONLESS WFFS IN IC

C. G. McKAY

Let Σ be the set of all wffs. of the Intuitionist Propositional Calculus (hereafter IC.) Let $\Sigma_1, \Sigma_1 \subset \Sigma$, be the set of wffs. which contain only the conjunction and negation signs. Similarly let $\Sigma_2, \Sigma_1 \subset \Sigma_2 \subset \Sigma$, be the set of wffs. which do not contain the implication sign. For wffs. $P_i \varepsilon \Sigma_1$ we have the well-known "representation theorem" of Gödel, [1], based on a result of Glivenko, that

$$\vdash_{\mathbf{IC}} P_i \quad iff \vdash_{\mathbf{HA}} P_i$$

where **HA**. is the classical propositional calculus. An analogous representation theorem for Σ_2 can be shown to follow from a result of Jankov, [2]. We note firstly.

THEOREM 1 There is no finite characteristic model for Σ_2

Proof Consider the wff $A \equiv \bigvee_{\substack{i < j \\ 2 \le i \le k}} \exists (a_i \land \neg a_j)$ and proceed exactly as in

Gödel's proof, *cf*. [1], that there exists no finite characteristic model for Σ .

LEMMA 1 Every wff $P_i \in \Sigma_2$ is equivalent to a wff $A_k \in \Sigma_2$ where A_k is of the form $\bigvee_{1 \le i \le k} a_i$ and each $a_i \in \Sigma_1$.

Proof By induction on the number of connectives in P_i using the equivalence $\neg(a \lor b) \equiv \neg a \land \neg b$ and the distributive laws.

LEMMA 2 For every wff $P_i \in \Sigma_2$, $\models_{\Gamma C} P_i$ iff A_k^{\leq} vanishes identically in $\Gamma(\mathbf{B}^k)$ where A_k is the normal form of P_i as defined in the preceding lemma, A_k^{\leq} is the lattice polynomial (for lattice background, see [3]) corresponding to A_k and $\Gamma(B^k)$ is the lattice obtained by applying the Jaśkowski operation Γ to the direct product of the 2-element Boolean lattice with itself k times.

Proof If $\mid_{\overline{\mathsf{IC}}} P_i$ then A_k^{\leq} will vanish identically in $\Gamma(\mathsf{B}^k)$ since $\Gamma(\mathsf{B}^k)$ is a finite distributive lattice. For the converse, suppose P_i is not a theorem

Received October 1, 1965