Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

AN EQUATIONAL AXIOMATIZATION OF ASSOCIATIVE NEWMAN ALGEBRAS

BOLESŁAW SOBOCIŃSKI

An associative Newman algebra is a Newman algebra¹ in which the binary multiplicative operation \times is associative for all elements belonging to the carrier set of the considered system. In [2], p. 265 and p. 271, Theorem 5 and Example E10, Newman has established that such an algebraic system is a proper extension of his complemented mixed algebra,² and that it is a direct join of an associative Boolean ring with unity element and a Boolean lattice (i.e. a Boolean algebra). Moreover, he has shown there that this system can be constructed by an addition of a rather weak formula, viz. KI given in section 1 below, as a new postulate, to the axiom-system formulated in [2] of Newman algebra.

In this note it will be shown that the addition of formula K1 mentioned above, as a new postulate, to the set of axioms of system \mathfrak{B} discussed in [3] allows us to construct a very simple and compact equational axiom-system for associative Newman algebra.

1 We define a system under consideration as follows:

Any algebraic system

$$\mathfrak{D} = \langle B, =, +, \times, - \rangle$$

with one binary relation =, two binary operations + and \times , and one unary operation -, is an associative Newman algebra, if it satisfies the postulates

Received April 18, 1971

^{1.} An acquaintance with the the papers [2] and [3] is presupposed. An enumeration of the formulas used in this note is a continuation of the enumeration which is given in [3]. As in that paper, the properties of "even" and "odd" elements will be not discussed in this note, and the axioms A1-A11 given below will be used mostly tacitly in the deductions.

^{2.} I.e., of Newman algebra, cf. [3].