Notre Dame Journal of Formal Logic Volume XI, Number 3, July 1970

LOCATING VERTICES OF TREES

MARTIN M. ZUCKERMAN

Let X be a nonempty set and let R and S be binary relations on X. Let x, y, x_1, x_2, y_1, y_2 be arbitrary elements of X, then, where R(R) is the range of R and ω is the set of nonnegative integers, $\langle X, R, S \rangle$ is called a (*dyadic* ordered) tree if the following hold:

- (1) If x_1Ry and x_2Ry , then $x_1 = x_2$.
- (2) For each $x \in X$, xRy for at most two y.
- (3) X R(R) is a unit set, $\{x_0\}$.
- (4) $y_1 Sy_2$ iff (a) $y_1 \neq y_2$, (b) $y_2 \not Sy_1$, and (c) for some $x \in X$, both xRy_1 and xRy_2 .
- (5) There exists a function $l: X \to \omega$ with the properties: (a) $l(x_0) = 0$ and (b) if xRy, then l(y) = l(x) + 1.

This definition, with minor modifications, is essentially the one given in [1].

If $\langle X, R, S \rangle$ is a tree, then the elements of X are called *points* or *vertices*. If *xRy* holds for a unique $y \in X, x$ is called a *simple point*; if *xRy* holds for two distinct y, x is called a *junction point*. Whenever *xRy* then y is said to be an *immediate successor of x*. The relation S, in effect, selects one of the two immediate successors of a junction point. Thus if xRy_1, xRy_2 and y_1Sy_2 , we say that y_1 is the *left successor* and y_2 the *right successor of x*.

l(x) is called the *level of* x. l_n will denote the set of vertices of level $n, n \in \omega$. Each l_n has at most 2^n vertices; hence for any tree $\langle X, R, S \rangle, X$ must be countable. Note that $\langle X, R, S \rangle$ has no junction points iff l is one-one iff $S = \emptyset$.

A path of a tree $\langle X, R, S \rangle$ is a finite sequence $[a_0, a_1, \ldots, a_n]$ or a denumerable sequence $[a_0, a_1, \ldots, a_n, \ldots]$ with the properties:

- (1) for each a_k appearing in the sequence, $a_k \in X$ and
- (2) if a_{k+1} also appears in the sequence, then a_{k+1} is an immediate successor of a_k .

Received May 7, 1969