Notre Dame Journal of Formal Logic Volume XVI, Number 3, July 1975 NDJFAM

A THEOREM ON RECURSIVELY ENUMERABLE VECTOR SPACES

RICHARD GUHL

This paper* is based on [1] and [2], but since we study only r.e. spaces, we prefer an exposition which is almost self-contained. Let F be a countable field for which there is a one-to-one mapping ϕ from F onto a recursive subset of $\varepsilon = (0, 1, ...)$ such that: $\phi(0_F) = 0$, $\phi(1_F) = 1$, $+_F$ and \cdot_F correspond to partial recursive functions, $\phi(F) = (0, \ldots, q-1)$, if card(F) = q and $\phi(F) = \varepsilon$, if card(F) = \aleph_0 . We write \mathcal{U}_F for the vector space over Fwhich consists of all sequences of field elements with at most finitely many nonzero components, together with component-wise addition and scalar multiplication. Put

(1)
$$\Phi\{x_n\} = \prod_{n \leq k} p_n^{\phi(x_n)} - 1, \text{ for } \{x_n\} \in \mathcal{U}_F,$$

where $p_0 = 2$, $p_n =$ the *n*'th odd prime, *k* any number such that $x_n = 0_F$, for n > k. Then Φ maps \mathcal{U}_F onto a vector space $\overline{U}_F = [\varepsilon_F, +, \cdot]$, where ε_F is an infinite recursive set and + and \cdot are partial recursive functions. Note that the ordinary number 0 is also the zero element of \overline{U}_F . Set $e_n = p_n - 1$, $\eta = (e_0, e_1, \ldots)$, then η is an infinite recursive basis of \overline{U}_F , hence $\dim(\overline{U}_F) = \aleph_0$. The word "space" will be used in the sense of "subspace of \overline{U}_F ". A space $\overline{V} = [\alpha, +, \cdot]$ is called *r.e.*, if the set α is r.e., *recursive*, if \overline{V} is r.e. and has at least one r.e. complementary space, *decidable*, if α is a recursive set, i.e., if both α and $\varepsilon_F - \alpha$ are r.e.

The *purpose* of this paper is to examine the relationship between (I) \overline{V} is a recursive space, and (II) \overline{V} is a decidable space. We shall prove:

- (a) if F is finite, (I) \Leftrightarrow (II),
- (b) if F is infinite, (I) \Rightarrow (II), but not conversely.

A linearly independent subset of ε_F is called a *repère*. According to [1], p. 2, there is an effective procedure which enables us to decide for any

Received January 24, 1973

^{*}This paper was written under Dr. J. C. E. Dekker.