A NOTE ON THE TRUTH-TABLE FOR $p \supset q$

ROBERT J. FARRELL

A didactic problem which inevitably confronts the teacher of elementary symbolic logic is the justification of the truth-table for $p \supset q$. Every teacher has encountered the inquisitive, contentious student who refuses to admit $F \supset T$ and $F \supset F$ are true. The justifications commonly found in textbooks, for one reason or another, all fall short of satisfying this student.

For instance, Jan Łukasiewicz, in order to justify the truth-table, made the following use of the obviously true proposition, If x is divisible by 9 , then x is divisible by 3 :

This implication is true for all the values of the numerical variable x. Hence on substituting $x / 16$ we should obtain a true sentence. The substitution yields:

If 16 is divisible by 9 , then 16 is divisible by 3 .
We have thus obtained an implication with a false antecedent and a false consequent. In view of such examples we agree $C 00=1$, i.e., that an implication with a false antecedent and a false consequent is true. By substituting $x / 15$ we obtain:

If 15 is divisible by 9 , then 15 is divisible by 3 .
Now the antecedent is false and the consequent true. We therefore agree that $C 01=1$, i.e., that an implication with a false antecedent and a true consequent is true.

By substituting $x / 18$ we obtain an implication with a true antecedent and a true consequent:

If 18 is divisible by 9 , then 18 is divisible by 3 .
Consequently, we agree that $C 11=1$, i.e., that an implication with a true antecedent and a true consequent is true. ${ }^{1}$

Unfortunately, the contentious student can employ an analogous argument to make a prima facie case for evaluating $F \supset F$ and $F \supset T$ (as well as $T \supset F$) as false. Consider the obviously false proposition: If Fig. $A B C D$ is a square, it has only three sides. Now consider the following three figures:

[^0]
[^0]: 1. Jan Łukasiewicz, Elements of Mathematical Logic, Pergamon Press, New York (1963), p. 26.
