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THE COMPLETENESS OF COMBINATORY LOGIC
WITH DISCRIMINATORS

JOHN T. KEARNS

1.0 In [2] I introduced a system of combinatory logic with discriminators.
Basically this is a system like those presented in [1], modified by the
addition of discriminators, or discrimination functions. In this system, the
reduction relation > is somewhat different from the reduction relations
considered in [1]. The relation > is characterized by transitivity and left
monotony—i.e.,

(T)X1>X2,X2>X3"—’X1>X3
W) X:> X, — X, Y > X,Y.

In addition, there is a basic schema for > corresponding to each basic
combinator.

1.1 Pure Combinators. The pure combinators are the same as those
studied in [1]; these are the combinators which do not involve discrimina-
tors. The basic pure combinators and their reduction schemata are:

IX>X WXY > XYY
BXY,Y, > X(Y.Y,) SX, X, Y > X,Y(X,Y)
CXY,Y, > XY, Y, OXX1 X, ¥ > X(X,V)(X,Y)
KXY > X VX X, Y, Yy > Xy (X,Y (X5 Yy)

Here, as in [1] and [2], parentheses associated to the left are omitted, so
that X, X, . . .X, is an abbreviation for (. . . (X, X,) .. .X,).

It is unnecessary to adopt so many basic pure combinators. For S, K,
and C provide a sufficient basis for constructing the rest, as shown below:

I = SKS ¢ = BBBSB
B=S(KS)K  =B{B[BW(BC)] B{(BB)
W =S(CI)

1.2 Some Definitions. A vegular combinator is one whose reduction leaves
its first argument unchanged. All of the basic pure combinators are
regular. It is sometimes desirable to employ combinators which leave
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