Notre Dame Journal of Formal Logic
Volume XIII, Number 4, October 1972
NDJFAM

FOR SO MANY INDIVIDUALS

KIT FINE

In [2], Tarski introduces the numerical quantifiers. These are expressions ($\exists_{k} x$) which mean "there are at least k individuals x such that'", where k is any nonnegative integer. Thus ($\exists_{1} x$) is the ordinary quantifier ($\exists x$). The numerical quantifiers may be defined in terms of the ordinary quantifier and identity as follows:

$$
\begin{gathered}
\left(\exists_{0} x\right) A \text { for } A \rightarrow A \\
\left(\exists_{k+1} x\right) A \text { for }\left(\exists_{k} x\right)(\exists y)(-(x=y) \& A \& A(y / x))
\end{gathered}
$$

where y is the first variable which does not occur in A and $A(t / x)$ is the result of substituting a term t for all free occurrences of x in A.

Because of their definability, the numerical quantifiers have rarely been considered on their own account. However, in this paper I consider a predicate logic without identity which is enriched with numerical quantifiers as primitive. In section 1, I present the syntax and semantics for this logic; and in sections 2 and 3, I establish its completeness.

1. The Logic L.

Syntax
Formulas These are constructed in the usual way from relation letters of given degree, (individual) constants, (individual) variables, the truthfunctional connectives v and - , the quantifier (x) and the quantifiers $\left(\exists_{k} x\right), k=2,3, \ldots$ We use $\left(\exists_{0} x\right) A$ to abbreviate $A \rightarrow A$ and $\left(\exists_{1} x\right) A$ to abbreviate $(\exists x) A$, i.e. $-(x)-A$. Also we suppose that there are a denumerable number of individual variables and at least one predicate letter.
Axioms (where $k=2,3 \ldots$, and $l=1,2, \ldots$)

1. All tautologous formulas
2. $(x) A \rightarrow A(t / x), t$ free for x in A
3. $(x)(A \rightarrow B) \rightarrow((x) A \rightarrow(x) B)$
4. $A \rightarrow(x) A, x$ not free in A
5. $\left(\exists_{k} x\right) A \rightarrow\left(\exists_{l} x\right) A, l<k$
6. $\left(\exists_{k} x\right) A \leftrightarrow \vee_{i=0}^{k}\left(\exists_{i} x\right)(A \& B) \&\left(\exists_{k-i} x\right)(A \&-B)$
