Notre Dame Journal of Formal Logic Volume XVIII, Number 4, October 1977 NDJFAM

A NOTE ON SUZUKI'S CHAIN OF HYPERDEGREES

P. G. ODIFREDDI

In his very important work [5] Suzuki found some interesting results about Π_1^1 implicitly definable sets. Precisely he proved that (in the notations of Rogers [4] which we freely use)

1 If $\{A\} \in \Pi_1^1$ and $\{B\} \in \Pi_1^1$, then

1a $A \leq_h B$ or $B \leq_h A$

and

1b $A \leq_h B$ iff $T^A \leq_h B$ iff $\lambda^A < \lambda^B$

2 If $\{A\} \in \Pi_1^1$, then $\{T^A\} \in \Pi_1^1$.

Otherwise stated, the hyperdegrees of Π_1^1 implicitly definable sets are well-ordered in a chain $\{a_{\alpha}\}_{\alpha < \alpha_0}$ such that

3 a_0 is the hyperdegree of Δ_1^1 sets

and

4 $a_{\alpha+1} = a'_{\alpha} = the hyperjump of a_{\alpha}$.

Suzuki left open the characterization of α_0 , that we now obtain* using some results of Moschovakis (see [4], p. 416):

Proposition α_0 is $\omega(\Delta_2^1)$, that is the least ordinal which is not a Δ_2^1 -ordinal.

Proof: We split it in two parts:

(a) $\alpha_0 \leq \omega(\Delta_2^1)$. Given $\{A\} \in \Pi_1^1$ let w_A be a tree for A ([4], p. 432), that is $w_A \in \mathsf{T}^X$ iff X = A. There exist a unique X (viz. A) s.t. $w_A \in \mathsf{T}^X$, so that $\|w_A\|^2 = (\min_{\substack{w_A \in T^X \\ w_A \notin T^X}} \|w_A\|^X) = \|w_A\|^A$. Then Lemma 1 of [4], p. 432, says that if $\{A\} \in \Pi_1^1$ and $\{B\} \in \Pi_1^1$ we have $\|w_A\|^2 \leq \|w_B\|^2 \Longrightarrow A \leq_h B$, and by Suzuki's

^{*}This work is part of the research program of the G.N.S.A.G.A. group of the Italian C.N.R.