Notre Dame Journal of Formal Logic Volume XXI, Number 1, January 1980 NDJFAM

DEDUCTIVE COMPLETENESS AND CONDITIONALIZATION IN SYSTEMS OF WEAK IMPLICATION

M. RICHARD DIAZ, Jr.

I wish to investigate the conditions under which certain systems of implication satisfy deductive completeness of the kind associated with the deduction theorem (in the sense of Curry and Feys [2]). The systems that I investigate have received considerable attention in the last two decades: the implication fragment of Relevance Logic, $\mathbf{R} \rightarrow$ (Church's Weak Implication); the implication fragment of strict implication, $\mathbf{S4} \rightarrow$; the implication fragment of Anderson and Belnap's System of Entailment, $\mathbf{E} \rightarrow$; and the system of Ticket Entailment, $\mathbf{T} \rightarrow$. None of these systems satisfy deductive completeness except under certain conditions which may be interpreted as the satisfaction of conditions of relevance (for $\mathbf{R} \rightarrow$), modality (for $\mathbf{S4} \rightarrow$), relevance and modality (for $\mathbf{E} \rightarrow$), and inference ticket/inference distinctions ($\mathbf{T} \rightarrow$). Thus we might say that they are each deductively complete for an extended notion of deductive completeness.

In Section 2, I formulate natural deduction systems $NR \rightarrow$, $NS4 \rightarrow$, $NE \rightarrow$, and $NT \rightarrow$ which are deductively equivalent respectively to $R \rightarrow$, $S4 \rightarrow$, $E \rightarrow$, and $T \rightarrow$. Each system involves only two rules, one of which is *modus ponens* and one a form of conditionalization. The conditionalization rule in each case is based on the deduction theorem of the corresponding axiom system. Furthermore, each system is the result of adding a further restriction to only the rule of conditionalization for the previous system. In this form we can see more clearly the relationship between the systems and intuitionistic implication ($H \rightarrow$); and what relevance, necessity, and ticket entailment amount to. Finally, in Section 3, I show how to formulate $T \rightarrow$ in terms of a restriction on the rule for *modus ponens*, and how adding this restriction to *modus ponens* in $E \rightarrow$, $R \rightarrow$, $S4 \rightarrow$, and $H \rightarrow$ affects these systems.

Let **S** be a deductive system with an implication operator, \supset , which satisfies the rule *modus ponens* (MP): $A, A \supset B \models_{\overline{S}} B$. Curry and Feys [2] called such a system deductively complete if, whenever from a premise B, and possibly other premises, we can derive A, then we can derive $B \supset A$ from these other premises alone. It has been shown by Gentzen [3] that

Received February 7, 1978