Notre Dame Journal of Formal Logic Volume XX, Number 3, July 1979 NDJFAM

ALTERNATIVE FORMS OF PROPOSITIONAL CALCULUS FOR A GIVEN DEDUCTION THEOREM

M. W. BUNDER

In a propositional calculus based on combinatory logic it is necessary to have a restriction on the deduction theorem for implication as otherwise Curry's paradox results (see [5]). In [1] and [2] we restricted the deduction theorem for implication as follows:

DTP If
$$\Delta$$
, $X \vdash Y$, then Δ , $\mathbf{H}X \vdash X \supset Y$,

where Δ is any sequence of obs and HX stands for "X is a proposition".

Motivation for this deduction theorem was given in [2] using the following three valued tables (that for implication also appears in Kleene [6]).

					Y				
X	HX	X	ΓX		$X \supset Y$	Т	F	N	
	т	Т	F	X	Т	Т	F	Ν	
F	Т	F	Т		F	Т	Т	Т	
Ν	N	N	Ν		N	Т	Ν	N	

where N can stand for "neither T nor F" and Γ (negation) can be defined by $CP(\Xi HI)$,¹

A question that arises is: to what extent are the entries in the third column and the third row of the table for implication uniquely determined by DTP, modus ponens and the (fairly obvious) rule:

$$X \vdash HX?$$

Ξ **HI**, **H** $X \vdash X$.

Received April 25, 1977

Н

^{1.} Here P stands for implication. ΞHI , which can be interpreted as stating that all propositions are provable, is taken as the "standard false" proposition. Given that ΞHI is assigned F the table for Γ follows from that for \supset .

After part (iii) on page xx, below we assume for ΞHI :